""" from transformers import pipeline import gradio as gr import torch model = "neuralmind/bert-base-portuguese-cased" pipe = pipeline('sentiment-analysis', model=model) def get_sentiment(input_text): return pipe(input_text) iface = gr.Interface(fn=get_sentiment, inputs='text', outputs=['text'], title='Sentiment Analysis', description='Obtenha o sentimento do texto de entrada:' ) iface.launch(inline=False)""" from transformers import pipeline import gradio as gr import torch model = "neuralmind/bert-base-portuguese-cased" pipe = pipeline('sentiment-analysis', model=model) def get_sentiment(input_text): return pipe(input_text) results = pipe(input_text) # Extract the label and score label = results[0]['label'] score = results[0]['score'] threshold = 0.5 if label == 'LABEL_1' and score > sentiment_threshold: # Positive sentiment return 'POSITIVO' else: label == 'LABEL_0' and score <= sentiment_threshold: # Negative sentiment return 'NEGATIVO' iface = gr.Interface(fn=get_sentiment, inputs='text', outputs='text', title='Sentiment Analysis', description='Obtenha o sentimento do texto de entrada:' ) iface.launch(inline=False)