Spaces:
Runtime error
Runtime error
| import base64 | |
| import json | |
| from datetime import datetime | |
| import torch | |
| import spaces | |
| from PIL import Image, ImageDraw | |
| from qwen_vl_utils import process_vision_info | |
| from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, AutoModelForCausalLM, AutoTokenizer | |
| from PIL import Image | |
| import ast | |
| import os | |
| from datetime import datetime | |
| import numpy as np | |
| from huggingface_hub import hf_hub_download, list_repo_files | |
| import gradio as gr | |
| import time | |
| # Define constants | |
| _SYSTEM = "Based on the screenshot of the page, I give a text description and you give its corresponding location. The coordinate represents a clickable location [x, y] for an element, which is a relative coordinate on the screenshot, scaled from 0 to 1." | |
| MIN_PIXELS = 256 * 28 * 28 | |
| MAX_PIXELS = 1344 * 28 * 28 | |
| # Specify the model repository and destination folder | |
| model_repo = "showlab/ShowUI-2B" | |
| destination_folder = "./showui-2b" | |
| # Ensure the destination folder exists | |
| os.makedirs(destination_folder, exist_ok=True) | |
| # List all files in the repository | |
| files = list_repo_files(repo_id=model_repo) | |
| # Download each file to the destination folder | |
| for file in files: | |
| file_path = hf_hub_download(repo_id=model_repo, filename=file, local_dir=destination_folder) | |
| print(f"Downloaded {file} to {file_path}") | |
| model = Qwen2VLForConditionalGeneration.from_pretrained( | |
| "./showui-2b", | |
| # "showlab/ShowUI-2B", | |
| torch_dtype=torch.bfloat16, | |
| device_map="cuda", | |
| ) | |
| # Load the processor | |
| processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=MIN_PIXELS, max_pixels=MAX_PIXELS) | |
| model_moon = AutoModelForCausalLM.from_pretrained("vikhyatk/moondream2", revision="2025-01-09", trust_remote_code=True, device_map={"": "cuda"}) | |
| # Helper functions | |
| def draw_point(image_input, point=None, radius=5): | |
| """Draw a point on the image.""" | |
| if isinstance(image_input, str): | |
| image = Image.open(image_input) | |
| else: | |
| image = Image.fromarray(np.uint8(image_input)) | |
| if point: | |
| x, y = point[0] * image.width, point[1] * image.height | |
| ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill="red") | |
| return image | |
| def array_to_image_path(image_array): | |
| """Save the uploaded image and return its path.""" | |
| if image_array is None: | |
| raise ValueError("No image provided. Please upload an image before submitting.") | |
| img = Image.fromarray(np.uint8(image_array)) | |
| timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| filename = f"image_{timestamp}.png" | |
| img.save(filename) | |
| return os.path.abspath(filename) | |
| def infer_moon(img, query): | |
| start = time.time() | |
| image = Image.fromarray(np.uint8(img)) | |
| points = model_moon.point(image, query)["points"] | |
| converted_data = [round(points[0]["x"], 2), round(points[0]["y"], 2)] | |
| end = time.time() | |
| total_time = end - start | |
| return converted_data, f"{round(total_time, 2)} seconds" | |
| def infer_showui(image_path, query): | |
| start = time.time() | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "text", "text": _SYSTEM}, | |
| {"type": "image", "image": image_path, "min_pixels": MIN_PIXELS, "max_pixels": MAX_PIXELS}, | |
| {"type": "text", "text": query}, | |
| ], | |
| } | |
| ] | |
| text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| image_inputs, video_inputs = process_vision_info(messages) | |
| inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt") | |
| inputs = inputs.to("cuda") | |
| # Generate output | |
| generated_ids = model.generate(**inputs, max_new_tokens=128) | |
| generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] | |
| output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
| # Parse the output into coordinates | |
| click_xy = ast.literal_eval(output_text) | |
| end = time.time() | |
| total_time = end - start | |
| return click_xy, f"{round(total_time, 2)} seconds" | |
| def run(image, query): | |
| """Main function for inference.""" | |
| image_path = array_to_image_path(image) | |
| moon, time_taken_moon = infer_moon(image, query) | |
| showui, time_taken_showui = infer_showui(image_path, query) | |
| # Draw the point on the image | |
| result_image = draw_point(image_path, showui, radius=10) | |
| result_moon_image = draw_point(image_path, moon, radius=10) | |
| return result_image, time_taken_showui, result_moon_image, time_taken_moon | |
| def build_demo(): | |
| with gr.Blocks(title="ShowUI Demo", theme=gr.themes.Default()) as demo: | |
| # State to store the consistent image path | |
| state_image_path = gr.State(value=None) | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| # Input components | |
| imagebox = gr.Image(type="numpy", label="Input Screenshot") | |
| textbox = gr.Textbox( | |
| show_label=True, | |
| placeholder="Enter a query (e.g., 'Click Nahant')", | |
| label="Query", | |
| ) | |
| submit_btn = gr.Button(value="Submit", variant="primary") | |
| # Placeholder examples | |
| gr.Examples( | |
| examples=[ | |
| ["./examples/app_store.png", "Download Kindle."], | |
| ["./examples/ios_setting.png", "Turn off Do not disturb."], | |
| ["./examples/image_13.png", "Tap on vehicle search."], | |
| ["./examples/map.png", "Boston."], | |
| ["./examples/wallet.png", "Scan a QR code."], | |
| ["./examples/word.png", "More shapes."], | |
| ["./examples/web_shopping.png", "Proceed to checkout."], | |
| ["./examples/web_forum.png", "Post my comment."], | |
| ["./examples/safari_google.png", "Click on search bar."], | |
| ], | |
| inputs=[imagebox, textbox], | |
| examples_per_page=3, | |
| ) | |
| with gr.Column(scale=8): | |
| # Output components | |
| output_img1 = gr.Image(type="pil", label="Show UI Output") | |
| output_time1 = gr.Text(label="showui inference time") | |
| output_img2 = gr.Image(type="pil", label="Moon dream Output") | |
| output_time2 = gr.Text(label="moondream inference time") | |
| # Add a note below the images to explain the red point | |
| gr.HTML( | |
| """ | |
| <p><strong>Note:</strong> The <span style="color: red;">red point</span> on the output images represents the predicted clickable coordinates.</p> | |
| """ | |
| ) | |
| # Buttons for voting, flagging, regenerating, and clearing | |
| with gr.Row(elem_id="action-buttons", equal_height=True): | |
| regenerate_btn = gr.Button(value="π Regenerate", variant="secondary") | |
| clear_btn = gr.Button(value="ποΈ Clear", interactive=True) # Combined Clear button | |
| # Define button actions | |
| def on_submit(image, query): | |
| """Handle the submit button click.""" | |
| if image is None: | |
| raise ValueError("No image provided. Please upload an image before submitting.") | |
| # Generate consistent image path and store it in the state | |
| image_path = array_to_image_path(image) | |
| return run(image, query) + (image_path,) | |
| submit_btn.click( | |
| on_submit, | |
| [imagebox, textbox], | |
| [output_img1, output_time1, output_img2, output_time2, state_image_path], | |
| ) | |
| clear_btn.click( | |
| lambda: (None, None, None, None, None), | |
| inputs=None, | |
| outputs=[imagebox, textbox, output_img1, output_img2, state_image_path], # Clear all outputs | |
| queue=False, | |
| ) | |
| regenerate_btn.click( | |
| lambda image, query, state_image_path: run(image, query), | |
| [imagebox, textbox, state_image_path], | |
| [output_img1, output_time1, output_img2, output_time2], | |
| ) | |
| return demo | |
| if __name__ == "__main__": | |
| demo = build_demo() | |
| demo.queue(api_open=False).launch(server_name="0.0.0.0", server_port=7860, ssr_mode=False, debug=True, share=True) | |