Spaces:
Sleeping
Sleeping
File size: 13,045 Bytes
8b95acd cedb103 8b95acd 3e0966c 9fc4060 3e0966c 619e447 cedb103 3e0966c 8b95acd c101d2c 8b95acd cedb103 8b95acd 3e0966c cedb103 3e0966c 8b95acd 3e0966c 8b95acd cedb103 3e0966c 8b95acd 3e0966c 77d9851 3e0966c 77d9851 3e0966c 77d9851 3e0966c 619e447 cedb103 619e447 cedb103 619e447 cedb103 619e447 cedb103 619e447 cedb103 619e447 cedb103 3e0966c cedb103 8b95acd 619e447 cedb103 619e447 cedb103 619e447 cedb103 619e447 cedb103 619e447 cedb103 8b95acd cedb103 8b95acd cedb103 f8b2050 cedb103 3e0966c 8b95acd 3e0966c 619e447 8b95acd cedb103 8b95acd cedb103 8b95acd 3e0966c 8b95acd cedb103 619e447 cedb103 8b95acd cedb103 3e0966c 8b95acd 3e0966c cedb103 3e0966c cedb103 619e447 cedb103 619e447 cedb103 619e447 cedb103 619e447 cedb103 619e447 cedb103 3e0966c 619e447 cedb103 619e447 cedb103 619e447 cedb103 8b95acd cedb103 3e0966c cedb103 3e0966c cedb103 8b95acd cedb103 619e447 8b95acd cedb103 8b95acd cedb103 8b95acd cedb103 8b95acd cedb103 8b95acd cedb103 8b95acd 3e0966c 8b95acd 3e0966c 619e447 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
# -*- coding: utf-8 -*-
"""
Swin-Large AI vs. Non-AI Detector (基于注意力机制可视化)
"""
import os
import math
import torch
import torch.nn.functional as F
import torch.nn as nn
import timm
import numpy as np
from PIL import Image
import gradio as gr
from huggingface_hub import hf_hub_download
from torchvision import transforms
import matplotlib.pyplot as plt
import matplotlib.cm as cm
# --- Configuration ---------------------------------------------------------
REPO_ID = "telecomadm1145/swin-ai-detection"
HF_FILENAME = "swin_classifier_stage1_v2_epoch_3.pth"
LOCAL_CKPT_DIR = "./checkpoints"
MODEL_NAME = "swin_large_patch4_window12_384" # ← 使用 large
NUM_CLASSES = 2
SEED = 4421
dropout_rate = 0.1
class_names = ["Non-AI Generated", "AI Generated"] # 0, 1
device = "cuda" if torch.cuda.is_available() else "cpu"
torch.manual_seed(SEED); np.random.seed(SEED)
print(f"Using device: {device}")
# ---------------------------------------------------------------------------
# 1. 修改模型结构以提取注意力
class SwinClassifierWithAttention(nn.Module):
def __init__(self, model_name, num_classes, pretrained=True):
super().__init__()
self.backbone = timm.create_model(model_name, pretrained=pretrained,
num_classes=0)
self.data_config = timm.data.resolve_data_config({}, model=self.backbone)
self.classifier = nn.Sequential(
nn.Dropout(dropout_rate),
nn.Linear(self.backbone.num_features, 512),
nn.BatchNorm1d(512),
nn.ReLU(),
nn.Dropout(dropout_rate * 0.7),
nn.Linear(512, 128),
nn.BatchNorm1d(128),
nn.ReLU(),
nn.Dropout(dropout_rate * 0.5),
nn.Linear(128, num_classes)
)
# 存储注意力权重的钩子
self.attention_weights = {}
self.register_attention_hooks()
def register_attention_hooks(self):
"""注册钩子函数来提取注意力权重"""
def hook_fn(name):
def hook(module, input, output):
# 对于Swin Transformer的窗口注意力机制
# output通常是 (B, N, C) 格式
if hasattr(module, 'attn'):
# 获取注意力权重
self.attention_weights[name] = module.attn.attention_weights
return hook
# 为每个stage的每个block注册钩子
for stage_idx, stage in enumerate(self.backbone.layers):
for block_idx, block in enumerate(stage.blocks):
hook_name = f"stage_{stage_idx}_block_{block_idx}"
if hasattr(block, 'attn'):
block.attn.register_forward_hook(hook_fn(hook_name))
def forward(self, x):
# 清空之前的注意力权重
self.attention_weights = {}
feats = self.backbone(x)
return self.classifier(feats)
# ---------------------------------------------------------------------------
# 2. 注意力提取和可视化类
class AttentionExtractor:
def __init__(self, model):
self.model = model
self.attention_maps = {}
def extract_attention_weights(self, x):
"""提取所有层的注意力权重"""
with torch.no_grad():
_ = self.model(x) # 前向传播以触发钩子
return self.model.attention_weights.copy()
def process_attention_for_visualization(self, attention_weights, input_size):
"""处理注意力权重用于可视化"""
processed_maps = {}
for layer_name, attn_weight in attention_weights.items():
if attn_weight is None:
continue
# attn_weight shape: [batch_size, num_heads, seq_len, seq_len]
if len(attn_weight.shape) == 4:
# 取平均池化所有注意力头
attn_map = attn_weight.mean(dim=1) # [batch_size, seq_len, seq_len]
# 取第一个样本
attn_map = attn_map[0] # [seq_len, seq_len]
# 对于自注意力,我们通常关注CLS token对其他token的注意力
# 或者计算所有token的平均注意力
if attn_map.shape[0] > 1:
# 计算每个位置的平均注意力分数
avg_attention = attn_map.mean(dim=0) # [seq_len]
# 将注意力分数reshape为2D特征图
seq_len = avg_attention.shape[0]
grid_size = int(math.sqrt(seq_len))
if grid_size * grid_size == seq_len:
attention_2d = avg_attention.reshape(grid_size, grid_size)
processed_maps[layer_name] = attention_2d
return processed_maps
# ---------------------------------------------------------------------------
# 3. 下载 / 缓存 checkpoint
print("⏬ Download / cache checkpoint …")
ckpt_path = hf_hub_download(
repo_id = REPO_ID,
filename = HF_FILENAME,
local_dir = LOCAL_CKPT_DIR,
force_download=False # 已存在则直接用
)
print(f"Checkpoint path: {ckpt_path}")
# ---------------------------------------------------------------------------
# 4. 实例化 & 加载权重
model = SwinClassifierWithAttention(MODEL_NAME, NUM_CLASSES, pretrained=False).to(device)
state = torch.load(ckpt_path, map_location=device, weights_only=False)
model.load_state_dict(state.get("model_state_dict", state), strict=False) # strict=False 因为添加了新的组件
model.eval()
print("✅ Model loaded.")
attention_extractor = AttentionExtractor(model)
# ---------------------------------------------------------------------------
# 5. 变换函数
def build_transform(is_training: bool, interpolation: str):
"""
根据插值方式(双线性 / 三次等)构建 timm 默认变换
"""
cfg = model.data_config.copy()
cfg.update(dict(interpolation=interpolation))
return timm.data.create_transform(**cfg, is_training=is_training)
# ---------------------------------------------------------------------------
# 6. 注意力可视化函数
def visualize_attention(attention_map, original_image, normalize=True):
"""将注意力图可视化到原始图像上"""
if normalize:
# 归一化注意力图到[0,1]
attention_map = attention_map.cpu().numpy()
attention_map = (attention_map - attention_map.min()) / (attention_map.max() - attention_map.min() + 1e-8)
else:
attention_map = attention_map.cpu().numpy()
# 调整注意力图大小到原始图像大小
attention_resized = Image.fromarray((attention_map * 255).astype(np.uint8)) \
.resize(original_image.size, Image.Resampling.BILINEAR)
# 转换为热力图
attention_array = np.array(attention_resized) / 255.0
heatmap = cm.jet(attention_array)[:, :, :3] # 去掉alpha通道
# 叠加到原始图像
original_array = np.array(original_image) / 255.0
if len(original_array.shape) == 3:
overlay = 0.6 * original_array + 0.4 * heatmap
else:
# 灰度图像处理
original_array = np.stack([original_array] * 3, axis=-1)
overlay = 0.6 * original_array + 0.4 * heatmap
overlay = np.clip(overlay, 0, 1)
return Image.fromarray((overlay * 255).astype(np.uint8))
# ---------------------------------------------------------------------------
# 7. 推理 + 注意力可视化
def infer_with_attention(image_pil: Image.Image,
interpolation: str = "bilinear",
attention_layer: str = "stage_3_block_1",
stage_average: bool = False,
normalize_attention: bool = True):
if image_pil is None:
return None, None
transform = build_transform(is_training=False, interpolation=interpolation)
input_tensor = transform(image_pil).unsqueeze(0).to(device)
# (1) 分类预测
with torch.no_grad():
logits = model(input_tensor)
probs = F.softmax(logits, dim=1)[0]
confidences = {class_names[i]: float(probs[i]) for i in range(NUM_CLASSES)}
# (2) 提取注意力权重
attention_weights = attention_extractor.extract_attention_weights(input_tensor)
if not attention_weights:
return confidences, None
# (3) 处理注意力权重
processed_attention = attention_extractor.process_attention_for_visualization(
attention_weights, input_tensor.shape[-2:]
)
if not processed_attention:
return confidences, None
# (4) 选择要可视化的注意力层
if stage_average:
# 计算指定stage所有block的平均注意力
stage_num = attention_layer.split('_')[1]
stage_attentions = []
for layer_name, attn_map in processed_attention.items():
if f"stage_{stage_num}_" in layer_name:
stage_attentions.append(attn_map)
if stage_attentions:
# 计算平均注意力
avg_attention = torch.stack(stage_attentions).mean(dim=0)
attention_vis = visualize_attention(avg_attention, image_pil, normalize_attention)
else:
return confidences, None
else:
# 使用指定层的注意力
if attention_layer in processed_attention:
attention_vis = visualize_attention(
processed_attention[attention_layer], image_pil, normalize_attention
)
else:
# 如果指定层不存在,使用第一个可用的层
first_layer = list(processed_attention.keys())[0]
attention_vis = visualize_attention(
processed_attention[first_layer], image_pil, normalize_attention
)
return confidences, attention_vis
# ---------------------------------------------------------------------------
# 8. Gradio UI
def launch_app():
with gr.Blocks() as demo:
gr.Markdown("""
# 🖼️ AI vs. Non-AI Image Classifier (Swin-Large + Attention Visualization)
🖼️ AI 鉴别器(基于 Swin-Large 视觉骨干,输出注意力热力图)
基于Swin Transformer的自注意力机制来可视化模型关注的区域。
Notice: 使用 bicubic 效果较好。请负责任地使用此工具。
此工具仅供研究和教育用途。
""")
with gr.Row():
in_img = gr.Image(type="pil", label="Upload an Image")
out_attention = gr.Image(type="pil", label="Attention Heatmap")
with gr.Row():
out_lbl = gr.Label(num_top_classes=2, label="Predictions")
with gr.Row():
interp_choice = gr.Radio(
["bilinear", "bicubic", "nearest"], value="bicubic",
label="Resize Interpolation (预处理插值)"
)
with gr.Row():
attention_layer_choice = gr.Dropdown(
choices=[
"stage_0_block_0", "stage_0_block_1",
"stage_1_block_0", "stage_1_block_1",
"stage_2_block_0", "stage_2_block_1", "stage_2_block_2",
"stage_3_block_0", "stage_3_block_1"
],
value="stage_3_block_1",
label="选择注意力层 (Attention Layer)"
)
with gr.Row():
stage_avg_toggle = gr.Checkbox(
value=False,
label="计算整个Stage的平均注意力 (Average Stage Attention)"
)
normalize_toggle = gr.Checkbox(
value=True,
label="归一化注意力 (Normalize Attention)"
)
run_btn = gr.Button("🚀 Run Analysis")
def _run(img, inter, attn_layer, stage_avg, normalize):
return infer_with_attention(
img,
interpolation=inter,
attention_layer=attn_layer,
stage_average=stage_avg,
normalize_attention=normalize
)
run_btn.click(
_run,
inputs=[in_img, interp_choice, attention_layer_choice, stage_avg_toggle, normalize_toggle],
outputs=[out_lbl, out_attention]
)
gr.Markdown("""
### 说明:
- **注意力层选择**: 可以选择不同的Swin Transformer层来查看注意力模式
- **Stage平均**: 勾选后会计算选中stage中所有block的平均注意力
- **归一化**: 将注意力值归一化到0-1范围内,便于可视化
- **热力图**: 红色区域表示模型更关注的区域,蓝色区域表示关注度较低的区域
""")
demo.launch()
# ---------------------------------------------------------------------------
if __name__ == "__main__":
launch_app() |