Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,24 +1,26 @@
|
|
| 1 |
# -*- coding: utf-8 -*-
|
| 2 |
"""
|
| 3 |
-
Swin
|
| 4 |
-------------------------------------------------------------------
|
| 5 |
-
• V2 / V4
|
| 6 |
-
• V7 / V8 / V9
|
|
|
|
| 7 |
-------------------------------------------------------------------
|
| 8 |
Author: telecomadm1145
|
| 9 |
"""
|
| 10 |
|
| 11 |
-
import os, torch, timm,
|
| 12 |
import torch.nn as nn
|
| 13 |
import torch.nn.functional as F
|
| 14 |
from PIL import Image
|
| 15 |
import gradio as gr
|
| 16 |
from huggingface_hub import hf_hub_download
|
|
|
|
| 17 |
|
| 18 |
# --------------------------------------------------
|
| 19 |
# 1. Model & Checkpoint Meta-data
|
| 20 |
# --------------------------------------------------
|
| 21 |
-
REPO_ID = "telecomadm1145/swin-ai-detection"
|
| 22 |
HF_FILENAMES = {
|
| 23 |
"V2": "swin_classifier_stage1_v2_epoch_3.pth",
|
| 24 |
"V4": "swin_classifier_stage1_v4.pth",
|
|
@@ -26,25 +28,27 @@ HF_FILENAMES = {
|
|
| 26 |
"V7": "swin_classifier_4class_fp16_v7.pth",
|
| 27 |
"V8": "swin_classifier_4class_fp16_v8_epoch7_acc9740.pth",
|
| 28 |
"V9": "swin_classifier_4class_fp16_v9_acc9861.pth",
|
|
|
|
| 29 |
}
|
| 30 |
|
| 31 |
CKPT_META = {
|
| 32 |
-
"V2": { "n_cls": 2, "head": "v4",
|
| 33 |
"names": ["Non-AI Generated", "AI Generated"]},
|
| 34 |
-
"V4": { "n_cls": 2, "head": "v4",
|
| 35 |
"names": ["Non-AI Generated", "AI Generated"]},
|
| 36 |
-
#"V5(underfitting)": { "n_cls": 2, "head": "v5",
|
| 37 |
# "names": ["Non-AI Generated", "AI Generated"]},
|
| 38 |
-
"V7": { "n_cls": 4, "head": "v7",
|
| 39 |
"names": ["non_ai", "ai", "ani_non_ai", "ani_ai"]},
|
| 40 |
-
"V8": { "n_cls": 4, "head": "v7",
|
| 41 |
"names": ["non_ai", "ai", "ani_non_ai", "ani_ai"]},
|
| 42 |
-
"V9": { "n_cls": 4, "head": "v7",
|
|
|
|
|
|
|
| 43 |
"names": ["non_ai", "ai", "ani_non_ai", "ani_ai"]},
|
| 44 |
}
|
| 45 |
|
| 46 |
-
DEFAULT_CKPT = "
|
| 47 |
-
MODEL_NAME = "swin_large_patch4_window12_384"
|
| 48 |
LOCAL_CKPT_DIR = "./checkpoints"
|
| 49 |
SEED = 4421
|
| 50 |
DROP_RATE = 0.1
|
|
@@ -56,6 +60,7 @@ print(f"Using device: {device}")
|
|
| 56 |
model, current_ckpt = None, None
|
| 57 |
current_meta = None
|
| 58 |
|
|
|
|
| 59 |
class SwinClassifier(nn.Module):
|
| 60 |
def __init__(self, model_name, num_classes, pretrained=True,
|
| 61 |
head_version="v4"):
|
|
@@ -66,7 +71,7 @@ class SwinClassifier(nn.Module):
|
|
| 66 |
self.data_config = timm.data.resolve_data_config({}, model=self.backbone)
|
| 67 |
|
| 68 |
# ------- 根据版本选择不同 head -------
|
| 69 |
-
if head_version == "v7": # <-- V7: 极简 64-hidden, GELU
|
| 70 |
self.classifier = nn.Sequential(
|
| 71 |
nn.Dropout(DROP_RATE),
|
| 72 |
nn.Linear(self.backbone.num_features, 64),
|
|
@@ -120,23 +125,28 @@ def load_model(ckpt_name: str):
|
|
| 120 |
|
| 121 |
print(f"\n🔄 Switching to {ckpt_name} ...")
|
| 122 |
meta = CKPT_META[ckpt_name]
|
|
|
|
| 123 |
ckpt_file = hf_hub_download(
|
| 124 |
repo_id=REPO_ID,
|
| 125 |
-
filename=
|
| 126 |
local_dir=LOCAL_CKPT_DIR, force_download=False
|
| 127 |
)
|
| 128 |
print(f"Checkpoint: {ckpt_file}")
|
| 129 |
|
| 130 |
# Build model structure
|
| 131 |
model = SwinClassifier(
|
| 132 |
-
|
| 133 |
num_classes = meta["n_cls"],
|
| 134 |
pretrained = False,
|
| 135 |
head_version = meta["head"]
|
| 136 |
).to(device)
|
| 137 |
|
| 138 |
-
#
|
| 139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
model.load_state_dict(state.get("model_state_dict", state), strict=True)
|
| 141 |
model.eval()
|
| 142 |
|
|
@@ -180,7 +190,7 @@ def launch():
|
|
| 180 |
load_model(DEFAULT_CKPT) # 预加载
|
| 181 |
|
| 182 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 183 |
-
gr.Markdown("#
|
| 184 |
gr.Markdown(
|
| 185 |
"Choose a model checkpoint on the left, upload an image, "
|
| 186 |
"and click **Run** to see predictions. Checkpoint V7+ outputs 4 classes."
|
|
|
|
| 1 |
# -*- coding: utf-8 -*-
|
| 2 |
"""
|
| 3 |
+
Swin/CAFormer AI detection
|
| 4 |
-------------------------------------------------------------------
|
| 5 |
+
• Swin-V2 / V4 : 2-class (AI vs. Non-AI)
|
| 6 |
+
• Swin-V7 / V8 / V9 : 4-class (photo / anime × AI / Non-AI)
|
| 7 |
+
• CAFormer-V10 : 4-class (photo / anime × AI / Non-AI)
|
| 8 |
-------------------------------------------------------------------
|
| 9 |
Author: telecomadm1145
|
| 10 |
"""
|
| 11 |
|
| 12 |
+
import os, torch, timm, numpy as np
|
| 13 |
import torch.nn as nn
|
| 14 |
import torch.nn.functional as F
|
| 15 |
from PIL import Image
|
| 16 |
import gradio as gr
|
| 17 |
from huggingface_hub import hf_hub_download
|
| 18 |
+
from safetensors.torch import load_file # Added for .safetensors support
|
| 19 |
|
| 20 |
# --------------------------------------------------
|
| 21 |
# 1. Model & Checkpoint Meta-data
|
| 22 |
# --------------------------------------------------
|
| 23 |
+
REPO_ID = "telecomadm1145/swin-ai-detection"
|
| 24 |
HF_FILENAMES = {
|
| 25 |
"V2": "swin_classifier_stage1_v2_epoch_3.pth",
|
| 26 |
"V4": "swin_classifier_stage1_v4.pth",
|
|
|
|
| 28 |
"V7": "swin_classifier_4class_fp16_v7.pth",
|
| 29 |
"V8": "swin_classifier_4class_fp16_v8_epoch7_acc9740.pth",
|
| 30 |
"V9": "swin_classifier_4class_fp16_v9_acc9861.pth",
|
| 31 |
+
"V1-CAFormer": "caformer_b36_4class.safetensors",
|
| 32 |
}
|
| 33 |
|
| 34 |
CKPT_META = {
|
| 35 |
+
"V2": { "n_cls": 2, "head": "v4", "backbone": "swin_large_patch4_window12_384",
|
| 36 |
"names": ["Non-AI Generated", "AI Generated"]},
|
| 37 |
+
"V4": { "n_cls": 2, "head": "v4", "backbone": "swin_large_patch4_window12_384",
|
| 38 |
"names": ["Non-AI Generated", "AI Generated"]},
|
| 39 |
+
#"V5(underfitting)": { "n_cls": 2, "head": "v5", "backbone": "swin_large_patch4_window12_384",
|
| 40 |
# "names": ["Non-AI Generated", "AI Generated"]},
|
| 41 |
+
"V7": { "n_cls": 4, "head": "v7", "backbone": "swin_large_patch4_window12_384",
|
| 42 |
"names": ["non_ai", "ai", "ani_non_ai", "ani_ai"]},
|
| 43 |
+
"V8": { "n_cls": 4, "head": "v7", "backbone": "swin_large_patch4_window12_384",
|
| 44 |
"names": ["non_ai", "ai", "ani_non_ai", "ani_ai"]},
|
| 45 |
+
"V9": { "n_cls": 4, "head": "v7", "backbone": "swin_large_patch4_window12_384",
|
| 46 |
+
"names": ["non_ai", "ai", "ani_non_ai", "ani_ai"]},
|
| 47 |
+
"V1-CAFormer": { "n_cls": 4, "head": "v7", "backbone": "caformer_b36.sail_in22k_ft_in1k_384",
|
| 48 |
"names": ["non_ai", "ai", "ani_non_ai", "ani_ai"]},
|
| 49 |
}
|
| 50 |
|
| 51 |
+
DEFAULT_CKPT = "V1-CAFormer"
|
|
|
|
| 52 |
LOCAL_CKPT_DIR = "./checkpoints"
|
| 53 |
SEED = 4421
|
| 54 |
DROP_RATE = 0.1
|
|
|
|
| 60 |
model, current_ckpt = None, None
|
| 61 |
current_meta = None
|
| 62 |
|
| 63 |
+
# Renamed to ImageClassifier for clarity, but keeping original name to avoid breaking changes if subclassed elsewhere.
|
| 64 |
class SwinClassifier(nn.Module):
|
| 65 |
def __init__(self, model_name, num_classes, pretrained=True,
|
| 66 |
head_version="v4"):
|
|
|
|
| 71 |
self.data_config = timm.data.resolve_data_config({}, model=self.backbone)
|
| 72 |
|
| 73 |
# ------- 根据版本选择不同 head -------
|
| 74 |
+
if head_version == "v7": # <-- V7, V8, V9, V10: 极简 64-hidden, GELU
|
| 75 |
self.classifier = nn.Sequential(
|
| 76 |
nn.Dropout(DROP_RATE),
|
| 77 |
nn.Linear(self.backbone.num_features, 64),
|
|
|
|
| 125 |
|
| 126 |
print(f"\n🔄 Switching to {ckpt_name} ...")
|
| 127 |
meta = CKPT_META[ckpt_name]
|
| 128 |
+
ckpt_filename = HF_FILENAMES[ckpt_name]
|
| 129 |
ckpt_file = hf_hub_download(
|
| 130 |
repo_id=REPO_ID,
|
| 131 |
+
filename=ckpt_filename,
|
| 132 |
local_dir=LOCAL_CKPT_DIR, force_download=False
|
| 133 |
)
|
| 134 |
print(f"Checkpoint: {ckpt_file}")
|
| 135 |
|
| 136 |
# Build model structure
|
| 137 |
model = SwinClassifier(
|
| 138 |
+
meta["backbone"], # Use backbone from meta
|
| 139 |
num_classes = meta["n_cls"],
|
| 140 |
pretrained = False,
|
| 141 |
head_version = meta["head"]
|
| 142 |
).to(device)
|
| 143 |
|
| 144 |
+
# Compatible load for .pth and .safetensors
|
| 145 |
+
if ckpt_filename.endswith(".safetensors"):
|
| 146 |
+
state = load_file(ckpt_file, device=device)
|
| 147 |
+
else:
|
| 148 |
+
state = torch.load(ckpt_file, map_location=device, weights_only=False)
|
| 149 |
+
|
| 150 |
model.load_state_dict(state.get("model_state_dict", state), strict=True)
|
| 151 |
model.eval()
|
| 152 |
|
|
|
|
| 190 |
load_model(DEFAULT_CKPT) # 预加载
|
| 191 |
|
| 192 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 193 |
+
gr.Markdown("# AI Detector")
|
| 194 |
gr.Markdown(
|
| 195 |
"Choose a model checkpoint on the left, upload an image, "
|
| 196 |
"and click **Run** to see predictions. Checkpoint V7+ outputs 4 classes."
|