Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,6 +5,7 @@
|
|
| 5 |
• Swin-V7 / V8 / V9 : 4-class (photo / anime × AI / Non-AI)
|
| 6 |
• CAFormer-V2.5 : 4-class (photo / anime × AI / Non-AI)
|
| 7 |
• V3-Emb : 2-class (AI vs. Non-AI)
|
|
|
|
| 8 |
-------------------------------------------------------------------
|
| 9 |
"""
|
| 10 |
import os, torch, timm, numpy as np
|
|
@@ -24,7 +25,8 @@ HF_FILENAMES = {
|
|
| 24 |
"V2": "swin_classifier_stage1_v2_epoch_3.pth",
|
| 25 |
"V4": "swin_classifier_stage1_v4.pth",
|
| 26 |
"V9": "swin_classifier_4class_fp16_v9_acc9861.pth",
|
| 27 |
-
"V3-Emb":
|
|
|
|
| 28 |
}
|
| 29 |
CKPT_META = {
|
| 30 |
"V2": { "n_cls": 2, "head": "v4", "backbone": "swin_large_patch4_window12_384",
|
|
@@ -42,9 +44,21 @@ CKPT_META = {
|
|
| 42 |
"backbone_repo_id": "SmilingWolf/wd-swinv2-tagger-v3",
|
| 43 |
"backbone_filename": "model.safetensors",
|
| 44 |
"names": ["Non-AI Generated", "AI Generated"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
}
|
| 46 |
}
|
| 47 |
-
DEFAULT_CKPT = "V3-Emb"
|
| 48 |
LOCAL_CKPT_DIR = "./checkpoints"
|
| 49 |
SEED = 4421
|
| 50 |
DROP_RATE = 0.1
|
|
@@ -55,6 +69,7 @@ print(f"Using device: {device}")
|
|
| 55 |
model, current_ckpt = None, None
|
| 56 |
current_meta = None
|
| 57 |
|
|
|
|
| 58 |
class EmbeddingClassifier(nn.Module):
|
| 59 |
def __init__(self, input_dim=1024, hidden_dim1=4096, hidden_dim2=256, output_dim=1):
|
| 60 |
super().__init__()
|
|
@@ -67,12 +82,13 @@ class EmbeddingClassifier(nn.Module):
|
|
| 67 |
nn.LayerNorm(hidden_dim2),
|
| 68 |
nn.GELU(),
|
| 69 |
nn.Dropout(0.4),
|
| 70 |
-
nn.Linear(hidden_dim2, output_dim)
|
| 71 |
-
nn.Sigmoid()
|
| 72 |
)
|
| 73 |
def forward(self, x):
|
| 74 |
-
return self.net(x)
|
| 75 |
|
|
|
|
| 76 |
class EmbeddingClassifierModel(nn.Module):
|
| 77 |
def __init__(self, timm_model_name, num_classes):
|
| 78 |
super().__init__()
|
|
@@ -82,10 +98,134 @@ class EmbeddingClassifierModel(nn.Module):
|
|
| 82 |
|
| 83 |
def forward(self, x):
|
| 84 |
features = self.backbone(x)
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
prob_class1 = 1 - prob_class0
|
| 87 |
return torch.cat([prob_class0, prob_class1], dim=1)
|
| 88 |
|
|
|
|
| 89 |
class SwinClassifier(nn.Module):
|
| 90 |
def __init__(self, model_name, num_classes, pretrained=True,
|
| 91 |
head_version="v4"):
|
|
@@ -141,6 +281,8 @@ def load_model(ckpt_name: str):
|
|
| 141 |
ckpt_filename = HF_FILENAMES[ckpt_name]
|
| 142 |
|
| 143 |
head_version = meta.get("head", "v4")
|
|
|
|
|
|
|
| 144 |
if head_version == "embedding_classifier":
|
| 145 |
print(f"Creating backbone: {meta['timm_model_name']}")
|
| 146 |
model = EmbeddingClassifierModel(
|
|
@@ -167,7 +309,40 @@ def load_model(ckpt_name: str):
|
|
| 167 |
classifier_state = torch.load(classifier_ckpt_file, map_location=device, weights_only=False)
|
| 168 |
model.classifier.load_state_dict(classifier_state)
|
| 169 |
print("✅ Classifier head weights loaded.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
else:
|
| 172 |
ckpt_file = hf_hub_download(
|
| 173 |
repo_id=REPO_ID,
|
|
@@ -235,9 +410,12 @@ def predict(image: Image.Image,
|
|
| 235 |
tfm = build_transform(False, interpolation)
|
| 236 |
inp = tfm(image).unsqueeze(0).to(device)
|
| 237 |
|
| 238 |
-
|
|
|
|
|
|
|
| 239 |
probs = model(inp)[0].cpu()
|
| 240 |
else:
|
|
|
|
| 241 |
probs = F.softmax(model(inp), dim=1)[0].cpu()
|
| 242 |
|
| 243 |
class_names = current_meta["names"]
|
|
@@ -251,13 +429,13 @@ def launch():
|
|
| 251 |
gr.Markdown("# AI Detector")
|
| 252 |
gr.Markdown(
|
| 253 |
"Choose a model checkpoint on the left, upload an image, "
|
| 254 |
-
"and click **Run** to see predictions. V3-Emb produces the best results."
|
| 255 |
)
|
| 256 |
with gr.Row():
|
| 257 |
with gr.Column(scale=1):
|
| 258 |
run_btn = gr.Button("🚀 Run", variant="primary")
|
| 259 |
sel_ckpt = gr.Dropdown(
|
| 260 |
-
list(HF_FILENAMES.keys()),
|
| 261 |
value=DEFAULT_CKPT, label="Checkpoint"
|
| 262 |
)
|
| 263 |
sel_interp = gr.Radio(
|
|
@@ -289,4 +467,5 @@ def launch():
|
|
| 289 |
demo.launch()
|
| 290 |
|
| 291 |
if __name__ == "__main__":
|
| 292 |
-
launch()
|
|
|
|
|
|
| 5 |
• Swin-V7 / V8 / V9 : 4-class (photo / anime × AI / Non-AI)
|
| 6 |
• CAFormer-V2.5 : 4-class (photo / anime × AI / Non-AI)
|
| 7 |
• V3-Emb : 2-class (AI vs. Non-AI)
|
| 8 |
+
• V3-Emb-MoE (新) : 2-class (AI vs. Non-AI, MoE Head)
|
| 9 |
-------------------------------------------------------------------
|
| 10 |
"""
|
| 11 |
import os, torch, timm, numpy as np
|
|
|
|
| 25 |
"V2": "swin_classifier_stage1_v2_epoch_3.pth",
|
| 26 |
"V4": "swin_classifier_stage1_v4.pth",
|
| 27 |
"V9": "swin_classifier_4class_fp16_v9_acc9861.pth",
|
| 28 |
+
"V3-Emb": "swinv2_v3_v3.pth",
|
| 29 |
+
"V3-Emb-MoE": "smoe_emb.pth" # <-- 新增 MoE 模型文件
|
| 30 |
}
|
| 31 |
CKPT_META = {
|
| 32 |
"V2": { "n_cls": 2, "head": "v4", "backbone": "swin_large_patch4_window12_384",
|
|
|
|
| 44 |
"backbone_repo_id": "SmilingWolf/wd-swinv2-tagger-v3",
|
| 45 |
"backbone_filename": "model.safetensors",
|
| 46 |
"names": ["Non-AI Generated", "AI Generated"]
|
| 47 |
+
},
|
| 48 |
+
# <-- 新增 MoE 模型元数据 -->
|
| 49 |
+
"V3-Emb-MoE": {
|
| 50 |
+
"n_cls": 2,
|
| 51 |
+
"head": "moe_embedding_classifier", # 新的 head 类型
|
| 52 |
+
"timm_model_name": "hf_hub:SmilingWolf/wd-swinv2-tagger-v3",
|
| 53 |
+
"backbone_repo_id": "SmilingWolf/wd-swinv2-tagger-v3",
|
| 54 |
+
"backbone_filename": "model.safetensors",
|
| 55 |
+
"names": ["Non-AI Generated", "AI Generated"],
|
| 56 |
+
"num_experts": 16, # <-- MoE 特定参数
|
| 57 |
+
"moe_hidden_dim": 1024, # <-- MoE 特定参数
|
| 58 |
+
"top_k": 2 # 假设 top_k=2,与训练脚本一致
|
| 59 |
}
|
| 60 |
}
|
| 61 |
+
DEFAULT_CKPT = "V3-Emb-MoE" # <-- 默认为新的 MoE 模型
|
| 62 |
LOCAL_CKPT_DIR = "./checkpoints"
|
| 63 |
SEED = 4421
|
| 64 |
DROP_RATE = 0.1
|
|
|
|
| 69 |
model, current_ckpt = None, None
|
| 70 |
current_meta = None
|
| 71 |
|
| 72 |
+
# --- 标准分类头 (V3-Emb) ---
|
| 73 |
class EmbeddingClassifier(nn.Module):
|
| 74 |
def __init__(self, input_dim=1024, hidden_dim1=4096, hidden_dim2=256, output_dim=1):
|
| 75 |
super().__init__()
|
|
|
|
| 82 |
nn.LayerNorm(hidden_dim2),
|
| 83 |
nn.GELU(),
|
| 84 |
nn.Dropout(0.4),
|
| 85 |
+
nn.Linear(hidden_dim2, output_dim)
|
| 86 |
+
# <-- 修改: 移除了 nn.Sigmoid(),包装器将处理激活
|
| 87 |
)
|
| 88 |
def forward(self, x):
|
| 89 |
+
return self.net(x) # 输出 logits
|
| 90 |
|
| 91 |
+
# --- 标准分类头包装器 (V3-Emb) ---
|
| 92 |
class EmbeddingClassifierModel(nn.Module):
|
| 93 |
def __init__(self, timm_model_name, num_classes):
|
| 94 |
super().__init__()
|
|
|
|
| 98 |
|
| 99 |
def forward(self, x):
|
| 100 |
features = self.backbone(x)
|
| 101 |
+
logits = self.classifier(features) # 获取 logits
|
| 102 |
+
# <-- 修改: 在此处应用 sigmoid 将 logits 转为 prob ---
|
| 103 |
+
prob_class0 = torch.sigmoid(logits)
|
| 104 |
+
prob_class1 = 1 - prob_class0
|
| 105 |
+
return torch.cat([prob_class0, prob_class1], dim=1)
|
| 106 |
+
|
| 107 |
+
# --- 新增: MoE 模型定义 (V3-Emb-MoE) ---
|
| 108 |
+
class Expert(nn.Module):
|
| 109 |
+
def __init__(self, input_dim, hidden_dim, output_dim, dropout=0.4):
|
| 110 |
+
super().__init__()
|
| 111 |
+
self.net = nn.Sequential(
|
| 112 |
+
nn.Linear(input_dim, hidden_dim),
|
| 113 |
+
nn.GELU(),
|
| 114 |
+
nn.Dropout(dropout),
|
| 115 |
+
nn.Linear(hidden_dim, output_dim)
|
| 116 |
+
)
|
| 117 |
+
def forward(self, x):
|
| 118 |
+
return self.net(x)
|
| 119 |
+
|
| 120 |
+
class SparseMoE(nn.Module):
|
| 121 |
+
def __init__(self, input_dim, num_experts, top_k, expert_hidden_dim, load_balancing_alpha=1e-2):
|
| 122 |
+
super().__init__()
|
| 123 |
+
self.input_dim = input_dim
|
| 124 |
+
self.num_experts = num_experts
|
| 125 |
+
self.top_k = top_k
|
| 126 |
+
self.load_balancing_alpha = load_balancing_alpha
|
| 127 |
+
self.gate = nn.Linear(input_dim, num_experts)
|
| 128 |
+
self.experts = nn.ModuleList([
|
| 129 |
+
Expert(input_dim, expert_hidden_dim, input_dim) for _ in range(num_experts)
|
| 130 |
+
])
|
| 131 |
+
|
| 132 |
+
def forward(self, x):
|
| 133 |
+
batch_size, _ = x.shape
|
| 134 |
+
gate_logits = self.gate(x)
|
| 135 |
+
gate_probs = torch.softmax(gate_logits, dim=-1)
|
| 136 |
+
top_k_weights, top_k_indices = torch.topk(gate_probs, self.top_k, dim=-1)
|
| 137 |
+
top_k_weights = top_k_weights / torch.sum(top_k_weights, dim=-1, keepdim=True)
|
| 138 |
+
|
| 139 |
+
# 辅助损失 (仅在训练时重要)
|
| 140 |
+
tokens_per_expert_onehot = nn.functional.one_hot(top_k_indices, self.num_experts).sum(dim=1).float()
|
| 141 |
+
f_i = tokens_per_expert_onehot.mean(dim=0)
|
| 142 |
+
P_i = gate_probs.mean(dim=0)
|
| 143 |
+
aux_loss = self.load_balancing_alpha * self.num_experts * torch.mean(f_i * P_i)
|
| 144 |
+
|
| 145 |
+
expanded_x = x.unsqueeze(1).expand(-1, self.top_k, -1)
|
| 146 |
+
flat_x = expanded_x.flatten(0, 1)
|
| 147 |
+
flat_top_k_indices = top_k_indices.flatten()
|
| 148 |
+
flat_output = torch.zeros_like(flat_x)
|
| 149 |
+
|
| 150 |
+
for i in range(self.num_experts):
|
| 151 |
+
mask = (flat_top_k_indices == i)
|
| 152 |
+
if mask.any():
|
| 153 |
+
expert_inputs = flat_x[mask]
|
| 154 |
+
expert_outputs = self.experts[i](expert_inputs)
|
| 155 |
+
flat_output[mask] = expert_outputs
|
| 156 |
+
|
| 157 |
+
expert_outputs_grouped = flat_output.view(batch_size, self.top_k, self.input_dim)
|
| 158 |
+
weighted_outputs = top_k_weights.unsqueeze(-1) * expert_outputs_grouped
|
| 159 |
+
final_output = torch.sum(weighted_outputs, dim=1)
|
| 160 |
+
|
| 161 |
+
return final_output, aux_loss
|
| 162 |
+
|
| 163 |
+
class MoEClassifier(nn.Module):
|
| 164 |
+
def __init__(self, input_dim=1024, output_dim=1, num_experts=8, top_k=2,
|
| 165 |
+
moe_hidden_dim=2048, head_hidden_dim=256, load_balancing_alpha=1e-2):
|
| 166 |
+
super().__init__()
|
| 167 |
+
self.input_dim = input_dim
|
| 168 |
+
self.num_experts = num_experts
|
| 169 |
+
self.top_k = top_k
|
| 170 |
+
self.moe_hidden_dim = moe_hidden_dim
|
| 171 |
+
self.head_hidden_dim = head_hidden_dim
|
| 172 |
+
self.load_balancing_alpha = load_balancing_alpha
|
| 173 |
+
self.pre_moe_net = nn.Sequential(
|
| 174 |
+
nn.Linear(input_dim, input_dim),
|
| 175 |
+
nn.LayerNorm(input_dim),
|
| 176 |
+
nn.GELU()
|
| 177 |
+
)
|
| 178 |
+
self.moe_layer = SparseMoE(
|
| 179 |
+
input_dim=input_dim,
|
| 180 |
+
num_experts=num_experts,
|
| 181 |
+
top_k=top_k,
|
| 182 |
+
expert_hidden_dim=moe_hidden_dim,
|
| 183 |
+
load_balancing_alpha=load_balancing_alpha
|
| 184 |
+
)
|
| 185 |
+
self.moe_ln = nn.LayerNorm(input_dim)
|
| 186 |
+
self.moe_dropout = nn.Dropout(0.4)
|
| 187 |
+
self.head = nn.Sequential(
|
| 188 |
+
nn.Linear(input_dim, head_hidden_dim),
|
| 189 |
+
nn.LayerNorm(head_hidden_dim),
|
| 190 |
+
nn.GELU(),
|
| 191 |
+
nn.Dropout(0.4),
|
| 192 |
+
nn.Linear(head_hidden_dim, output_dim) # 输出 logits
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
def forward(self, x):
|
| 196 |
+
pre_moe_out = self.pre_moe_net(x)
|
| 197 |
+
moe_input = pre_moe_out
|
| 198 |
+
moe_output, aux_loss = self.moe_layer(moe_input)
|
| 199 |
+
moe_output = self.moe_dropout(moe_output)
|
| 200 |
+
post_moe = self.moe_ln(moe_output + moe_input)
|
| 201 |
+
logits = self.head(post_moe)
|
| 202 |
+
return logits, aux_loss
|
| 203 |
+
|
| 204 |
+
# --- 新增: MoE 分类头包装器 (V3-Emb-MoE) ---
|
| 205 |
+
class MoEEmbeddingClassifierModel(nn.Module):
|
| 206 |
+
def __init__(self, timm_model_name, num_classes, num_experts, moe_hidden_dim, top_k=2):
|
| 207 |
+
super().__init__()
|
| 208 |
+
self.backbone = timm.create_model(timm_model_name, pretrained=False, num_classes=0)
|
| 209 |
+
self.data_config = timm.data.resolve_data_config({}, model=self.backbone)
|
| 210 |
+
# 使用 MoEClassifier 作为分类头
|
| 211 |
+
self.classifier = MoEClassifier(
|
| 212 |
+
input_dim=self.backbone.num_features,
|
| 213 |
+
output_dim=1, # 2-class (AI vs Non-AI)
|
| 214 |
+
num_experts=num_experts,
|
| 215 |
+
top_k=top_k,
|
| 216 |
+
moe_hidden_dim=moe_hidden_dim,
|
| 217 |
+
head_hidden_dim=256 # 保持与 V3-Emb 的 head_hidden_dim 一致
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
def forward(self, x):
|
| 221 |
+
features = self.backbone(x)
|
| 222 |
+
logits, aux_loss = self.classifier(features) # MoE 返回 (logits, aux_loss)
|
| 223 |
+
# 推理时我们只关心 logits
|
| 224 |
+
prob_class0 = torch.sigmoid(logits)
|
| 225 |
prob_class1 = 1 - prob_class0
|
| 226 |
return torch.cat([prob_class0, prob_class1], dim=1)
|
| 227 |
|
| 228 |
+
|
| 229 |
class SwinClassifier(nn.Module):
|
| 230 |
def __init__(self, model_name, num_classes, pretrained=True,
|
| 231 |
head_version="v4"):
|
|
|
|
| 281 |
ckpt_filename = HF_FILENAMES[ckpt_name]
|
| 282 |
|
| 283 |
head_version = meta.get("head", "v4")
|
| 284 |
+
|
| 285 |
+
# --- 修改: 扩展加载逻辑 ---
|
| 286 |
if head_version == "embedding_classifier":
|
| 287 |
print(f"Creating backbone: {meta['timm_model_name']}")
|
| 288 |
model = EmbeddingClassifierModel(
|
|
|
|
| 309 |
classifier_state = torch.load(classifier_ckpt_file, map_location=device, weights_only=False)
|
| 310 |
model.classifier.load_state_dict(classifier_state)
|
| 311 |
print("✅ Classifier head weights loaded.")
|
| 312 |
+
|
| 313 |
+
# --- 新增: MoE 加载逻辑 ---
|
| 314 |
+
elif head_version == "moe_embedding_classifier":
|
| 315 |
+
print(f"Creating MoE model with backbone: {meta['timm_model_name']}")
|
| 316 |
+
model = MoEEmbeddingClassifierModel(
|
| 317 |
+
timm_model_name=meta["timm_model_name"],
|
| 318 |
+
num_classes=meta["n_cls"],
|
| 319 |
+
num_experts=meta["num_experts"],
|
| 320 |
+
moe_hidden_dim=meta["moe_hidden_dim"],
|
| 321 |
+
top_k=meta.get("top_k", 2) # 从 meta 或 默认值
|
| 322 |
+
).to(device)
|
| 323 |
+
|
| 324 |
+
print(f"Loading backbone weights from {meta['backbone_repo_id']}...")
|
| 325 |
+
backbone_ckpt_file = hf_hub_download(
|
| 326 |
+
repo_id=meta["backbone_repo_id"],
|
| 327 |
+
filename=meta["backbone_filename"],
|
| 328 |
+
local_dir=LOCAL_CKPT_DIR, force_download=False
|
| 329 |
+
)
|
| 330 |
+
backbone_state = load_file(backbone_ckpt_file, device=device)
|
| 331 |
+
model.backbone.load_state_dict(backbone_state,strict=False)
|
| 332 |
+
print("✅ Backbone weights loaded.")
|
| 333 |
|
| 334 |
+
print(f"Loading MoE classifier head weights from {REPO_ID}...")
|
| 335 |
+
classifier_ckpt_file = hf_hub_download(
|
| 336 |
+
repo_id=REPO_ID,
|
| 337 |
+
filename=ckpt_filename,
|
| 338 |
+
local_dir=LOCAL_CKPT_DIR, force_download=False
|
| 339 |
+
)
|
| 340 |
+
# 假设 MoE 头部保存的也是 state_dict
|
| 341 |
+
classifier_state = torch.load(classifier_ckpt_file, map_location=device, weights_only=False)
|
| 342 |
+
model.classifier.load_state_dict(classifier_state)
|
| 343 |
+
print("✅ MoE Classifier head weights loaded.")
|
| 344 |
+
|
| 345 |
+
# --- 原始 Swin 加载逻辑 ---
|
| 346 |
else:
|
| 347 |
ckpt_file = hf_hub_download(
|
| 348 |
repo_id=REPO_ID,
|
|
|
|
| 410 |
tfm = build_transform(False, interpolation)
|
| 411 |
inp = tfm(image).unsqueeze(0).to(device)
|
| 412 |
|
| 413 |
+
# --- 修改: 扩展 logits/prob 处理 ---
|
| 414 |
+
# V3-Emb 和 V3-Emb-MoE 包装器都已在其 forward 中转换为 2 类概率
|
| 415 |
+
if current_meta["head"] in ["embedding_classifier", "moe_embedding_classifier"]:
|
| 416 |
probs = model(inp)[0].cpu()
|
| 417 |
else:
|
| 418 |
+
# 其他模型 (V2, V4, V9, CAFormer) 输出 logits,需要 softmax
|
| 419 |
probs = F.softmax(model(inp), dim=1)[0].cpu()
|
| 420 |
|
| 421 |
class_names = current_meta["names"]
|
|
|
|
| 429 |
gr.Markdown("# AI Detector")
|
| 430 |
gr.Markdown(
|
| 431 |
"Choose a model checkpoint on the left, upload an image, "
|
| 432 |
+
"and click **Run** to see predictions. V3-Emb-MoE produces the best results."
|
| 433 |
)
|
| 434 |
with gr.Row():
|
| 435 |
with gr.Column(scale=1):
|
| 436 |
run_btn = gr.Button("🚀 Run", variant="primary")
|
| 437 |
sel_ckpt = gr.Dropdown(
|
| 438 |
+
list(HF_FILENAMES.keys()), # 自动包含 "V3-Emb-MoE"
|
| 439 |
value=DEFAULT_CKPT, label="Checkpoint"
|
| 440 |
)
|
| 441 |
sel_interp = gr.Radio(
|
|
|
|
| 467 |
demo.launch()
|
| 468 |
|
| 469 |
if __name__ == "__main__":
|
| 470 |
+
launch()
|
| 471 |
+
|