Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,217 +1,235 @@
|
|
| 1 |
# -*- coding: utf-8 -*-
|
| 2 |
"""
|
| 3 |
-
Swin-Large AI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
"""
|
| 5 |
-
|
| 6 |
-
import math
|
| 7 |
-
import torch
|
| 8 |
-
import torch.nn.functional as F
|
| 9 |
import torch.nn as nn
|
| 10 |
-
import
|
| 11 |
-
import numpy as np
|
| 12 |
from PIL import Image
|
| 13 |
import gradio as gr
|
| 14 |
-
import matplotlib.pyplot as plt
|
| 15 |
-
|
| 16 |
from huggingface_hub import hf_hub_download
|
| 17 |
|
| 18 |
-
#
|
| 19 |
-
|
|
|
|
|
|
|
| 20 |
HF_FILENAMES = {
|
| 21 |
-
"V2":
|
| 22 |
-
"V4":
|
| 23 |
-
"V5(underfitting)":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
}
|
| 25 |
-
|
|
|
|
|
|
|
| 26 |
LOCAL_CKPT_DIR = "./checkpoints"
|
| 27 |
-
MODEL_NAME = "swin_large_patch4_window12_384"
|
| 28 |
-
NUM_CLASSES = 2
|
| 29 |
SEED = 4421
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
class_names = ["Non-AI Generated", "AI Generated"] # 0, 1
|
| 33 |
|
| 34 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 35 |
-
torch.manual_seed(SEED)
|
| 36 |
-
np.random.seed(SEED)
|
| 37 |
print(f"Using device: {device}")
|
| 38 |
|
| 39 |
-
#
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
| 43 |
|
| 44 |
-
#
|
| 45 |
-
#
|
|
|
|
| 46 |
class SwinClassifier(nn.Module):
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
The MLP head can be configured for different model versions (V2/V4 vs. V5).
|
| 50 |
-
"""
|
| 51 |
-
def __init__(self, model_name, num_classes, pretrained=True, classifier_version='v4'):
|
| 52 |
super().__init__()
|
| 53 |
-
self.backbone = timm.create_model(
|
| 54 |
-
|
|
|
|
| 55 |
self.data_config = timm.data.resolve_data_config({}, model=self.backbone)
|
| 56 |
|
| 57 |
-
#
|
| 58 |
-
if
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
self.classifier = nn.Sequential(
|
| 61 |
-
nn.Dropout(
|
| 62 |
nn.Linear(self.backbone.num_features, 512),
|
| 63 |
nn.BatchNorm1d(512),
|
| 64 |
-
nn.GELU(),
|
| 65 |
-
nn.Dropout(
|
| 66 |
nn.Linear(512, 128),
|
| 67 |
nn.BatchNorm1d(128),
|
| 68 |
-
nn.GELU(),
|
| 69 |
-
nn.Dropout(
|
| 70 |
-
nn.Linear(128, num_classes)
|
| 71 |
)
|
| 72 |
-
|
| 73 |
-
|
| 74 |
self.classifier = nn.Sequential(
|
| 75 |
-
nn.Dropout(
|
| 76 |
nn.Linear(self.backbone.num_features, 512),
|
| 77 |
nn.BatchNorm1d(512),
|
| 78 |
nn.ReLU(),
|
| 79 |
-
nn.Dropout(
|
| 80 |
nn.Linear(512, 128),
|
| 81 |
nn.BatchNorm1d(128),
|
| 82 |
nn.ReLU(),
|
| 83 |
-
nn.Dropout(
|
| 84 |
-
nn.Linear(128, num_classes)
|
| 85 |
)
|
| 86 |
|
| 87 |
def forward(self, x):
|
| 88 |
-
|
| 89 |
-
|
| 90 |
|
| 91 |
-
#
|
| 92 |
-
#
|
|
|
|
| 93 |
def load_model(ckpt_name: str):
|
| 94 |
-
"""
|
| 95 |
-
|
| 96 |
-
If the model is already loaded, it does nothing.
|
| 97 |
-
It selects the correct classifier head based on the checkpoint name.
|
| 98 |
-
"""
|
| 99 |
-
global model, current_ckpt_name
|
| 100 |
-
if ckpt_name == current_ckpt_name and model is not None:
|
| 101 |
-
#print(f"✅ Model '{ckpt_name}' is already loaded.")
|
| 102 |
-
return
|
| 103 |
|
| 104 |
-
|
| 105 |
-
|
| 106 |
|
| 107 |
-
print("
|
| 108 |
-
|
|
|
|
| 109 |
repo_id=REPO_ID,
|
| 110 |
-
filename=
|
| 111 |
-
local_dir=LOCAL_CKPT_DIR,
|
| 112 |
-
force_download=False
|
| 113 |
)
|
| 114 |
-
print(f"Checkpoint
|
| 115 |
-
|
| 116 |
-
# Determine which classifier version to use based on the checkpoint name
|
| 117 |
-
classifier_version = 'v5' if 'V5' in ckpt_name else 'v4'
|
| 118 |
|
| 119 |
-
#
|
| 120 |
model = SwinClassifier(
|
| 121 |
MODEL_NAME,
|
| 122 |
-
|
| 123 |
-
pretrained=False,
|
| 124 |
-
|
| 125 |
).to(device)
|
| 126 |
|
| 127 |
-
|
|
|
|
| 128 |
model.load_state_dict(state.get("model_state_dict", state), strict=True)
|
| 129 |
model.eval()
|
| 130 |
-
current_ckpt_name = ckpt_name
|
| 131 |
-
print(f"✅ Model '{ckpt_name}' loaded successfully.")
|
| 132 |
|
| 133 |
-
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
def build_transform(is_training: bool, interpolation: str):
|
| 136 |
-
if model is None:
|
| 137 |
-
raise RuntimeError("Model is not loaded. Please call load_model() first.")
|
| 138 |
cfg = model.data_config.copy()
|
| 139 |
cfg.update(dict(interpolation=interpolation))
|
| 140 |
return timm.data.create_transform(**cfg, is_training=is_training)
|
| 141 |
|
| 142 |
-
#
|
| 143 |
-
#
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
transform = build_transform(is_training=False, interpolation=interpolation)
|
| 153 |
-
input_tensor = transform(image_pil).unsqueeze(0).to(device)
|
| 154 |
|
| 155 |
-
|
| 156 |
-
|
|
|
|
| 157 |
|
| 158 |
-
probs = F.softmax(
|
| 159 |
-
|
| 160 |
|
| 161 |
-
|
|
|
|
|
|
|
| 162 |
|
| 163 |
-
#
|
| 164 |
-
#
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
load_model(DEFAULT_CKPT)
|
| 168 |
|
| 169 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 170 |
-
gr.Markdown("# 🖼️ AI
|
| 171 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
with gr.Row():
|
| 174 |
with gr.Column(scale=1):
|
|
|
|
| 175 |
run_btn = gr.Button("🚀 Run", variant="primary")
|
| 176 |
|
| 177 |
-
|
| 178 |
-
list(HF_FILENAMES.keys()),
|
|
|
|
| 179 |
)
|
| 180 |
-
|
| 181 |
-
["bilinear", "bicubic", "nearest"],
|
| 182 |
-
label="Resize Interpolation
|
| 183 |
)
|
| 184 |
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
out_lbl = gr.Label(num_top_classes=2, label="Predictions")
|
| 189 |
|
| 190 |
run_btn.click(
|
| 191 |
-
|
| 192 |
-
inputs=[in_img,
|
| 193 |
outputs=[out_lbl]
|
| 194 |
)
|
| 195 |
|
| 196 |
-
#
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
print(f"Created '{example_dir}' directory. Please add sample images there for UI examples.")
|
| 201 |
|
| 202 |
-
|
| 203 |
-
|
|
|
|
| 204 |
if example_files:
|
| 205 |
gr.Examples(
|
| 206 |
examples=[[f, DEFAULT_CKPT, "bicubic"] for f in example_files],
|
| 207 |
-
inputs=[in_img,
|
| 208 |
outputs=[out_lbl],
|
| 209 |
-
fn=
|
| 210 |
cache_examples=False,
|
| 211 |
)
|
| 212 |
|
| 213 |
demo.launch()
|
| 214 |
|
| 215 |
-
#
|
| 216 |
if __name__ == "__main__":
|
| 217 |
-
|
|
|
|
| 1 |
# -*- coding: utf-8 -*-
|
| 2 |
"""
|
| 3 |
+
Swin-Large AI / Non-AI ‑- now with V7 (4-class) support
|
| 4 |
+
-------------------------------------------------------------------
|
| 5 |
+
• V2 / V4 / V5(underfitting) : 2-class (photo-style AI vs. Non-AI)
|
| 6 |
+
• NEW V7 : 4-class (photo / anime × AI / Non-AI)
|
| 7 |
+
-------------------------------------------------------------------
|
| 8 |
+
Author : you 😊
|
| 9 |
"""
|
| 10 |
+
|
| 11 |
+
import os, torch, timm, math, numpy as np
|
|
|
|
|
|
|
| 12 |
import torch.nn as nn
|
| 13 |
+
import torch.nn.functional as F
|
|
|
|
| 14 |
from PIL import Image
|
| 15 |
import gradio as gr
|
|
|
|
|
|
|
| 16 |
from huggingface_hub import hf_hub_download
|
| 17 |
|
| 18 |
+
# --------------------------------------------------
|
| 19 |
+
# 1. Model & Checkpoint Meta-data
|
| 20 |
+
# --------------------------------------------------
|
| 21 |
+
REPO_ID = "telecomadm1145/swin-ai-detection" # 同一个 repo 存两种 ckpt 也 OK
|
| 22 |
HF_FILENAMES = {
|
| 23 |
+
"V2": "swin_classifier_stage1_v2_epoch_3.pth",
|
| 24 |
+
"V4": "swin_classifier_stage1_v4.pth",
|
| 25 |
+
"V5(underfitting)": "swin_classifier_stage1_v5_fp16.pth",
|
| 26 |
+
"V7": "swin_classifier_4class_fp16_v7.pth" # <-- NEW
|
| 27 |
+
}
|
| 28 |
+
|
| 29 |
+
CKPT_META = {
|
| 30 |
+
"V2": { "n_cls": 2, "head": "v4",
|
| 31 |
+
"names": ["Non-AI Generated", "AI Generated"]},
|
| 32 |
+
"V4": { "n_cls": 2, "head": "v4",
|
| 33 |
+
"names": ["Non-AI Generated", "AI Generated"]},
|
| 34 |
+
"V5(underfitting)": { "n_cls": 2, "head": "v5",
|
| 35 |
+
"names": ["Non-AI Generated", "AI Generated"]},
|
| 36 |
+
# ---------- NEW ----------
|
| 37 |
+
"V7": { "n_cls": 4, "head": "v7",
|
| 38 |
+
"names": ["non_ai", "ai", "ani_non_ai", "ani_ai"]},
|
| 39 |
}
|
| 40 |
+
|
| 41 |
+
DEFAULT_CKPT = "V4" # 默认仍然先加载较小的 2-类模型
|
| 42 |
+
MODEL_NAME = "swin_large_patch4_window12_384"
|
| 43 |
LOCAL_CKPT_DIR = "./checkpoints"
|
|
|
|
|
|
|
| 44 |
SEED = 4421
|
| 45 |
+
DROP_RATE = 0.1
|
|
|
|
|
|
|
| 46 |
|
| 47 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 48 |
+
torch.manual_seed(SEED); np.random.seed(SEED)
|
|
|
|
| 49 |
print(f"Using device: {device}")
|
| 50 |
|
| 51 |
+
# --------------------------------------------------
|
| 52 |
+
# 2. Global State
|
| 53 |
+
# --------------------------------------------------
|
| 54 |
+
model, current_ckpt = None, None
|
| 55 |
+
current_meta = None # 记录当前模型的 meta(类别数 / 名称)
|
| 56 |
|
| 57 |
+
# --------------------------------------------------
|
| 58 |
+
# 3. SwinClassifier – 添加 v7 专属 MLP
|
| 59 |
+
# --------------------------------------------------
|
| 60 |
class SwinClassifier(nn.Module):
|
| 61 |
+
def __init__(self, model_name, num_classes, pretrained=True,
|
| 62 |
+
head_version="v4"):
|
|
|
|
|
|
|
|
|
|
| 63 |
super().__init__()
|
| 64 |
+
self.backbone = timm.create_model(
|
| 65 |
+
model_name, pretrained=pretrained, num_classes=0
|
| 66 |
+
)
|
| 67 |
self.data_config = timm.data.resolve_data_config({}, model=self.backbone)
|
| 68 |
|
| 69 |
+
# ------- 根据版本选择不同 head -------
|
| 70 |
+
if head_version == "v7": # <-- V7: 极简 64-hidden, GELU
|
| 71 |
+
self.classifier = nn.Sequential(
|
| 72 |
+
nn.Dropout(DROP_RATE),
|
| 73 |
+
nn.Linear(self.backbone.num_features, 64),
|
| 74 |
+
nn.BatchNorm1d(64),
|
| 75 |
+
nn.GELU(),
|
| 76 |
+
nn.Dropout(DROP_RATE * 0.8),
|
| 77 |
+
nn.Linear(64, num_classes),
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
elif head_version == "v5": # V5: 512-128, GELU
|
| 81 |
self.classifier = nn.Sequential(
|
| 82 |
+
nn.Dropout(DROP_RATE),
|
| 83 |
nn.Linear(self.backbone.num_features, 512),
|
| 84 |
nn.BatchNorm1d(512),
|
| 85 |
+
nn.GELU(),
|
| 86 |
+
nn.Dropout(DROP_RATE * 0.7),
|
| 87 |
nn.Linear(512, 128),
|
| 88 |
nn.BatchNorm1d(128),
|
| 89 |
+
nn.GELU(),
|
| 90 |
+
nn.Dropout(DROP_RATE * 0.5),
|
| 91 |
+
nn.Linear(128, num_classes),
|
| 92 |
)
|
| 93 |
+
|
| 94 |
+
else: # V2 / V4: 512-128, ReLU
|
| 95 |
self.classifier = nn.Sequential(
|
| 96 |
+
nn.Dropout(DROP_RATE),
|
| 97 |
nn.Linear(self.backbone.num_features, 512),
|
| 98 |
nn.BatchNorm1d(512),
|
| 99 |
nn.ReLU(),
|
| 100 |
+
nn.Dropout(DROP_RATE * 0.7),
|
| 101 |
nn.Linear(512, 128),
|
| 102 |
nn.BatchNorm1d(128),
|
| 103 |
nn.ReLU(),
|
| 104 |
+
nn.Dropout(DROP_RATE * 0.5),
|
| 105 |
+
nn.Linear(128, num_classes),
|
| 106 |
)
|
| 107 |
|
| 108 |
def forward(self, x):
|
| 109 |
+
return self.classifier(self.backbone(x))
|
| 110 |
+
|
| 111 |
|
| 112 |
+
# --------------------------------------------------
|
| 113 |
+
# 4. 动态加载模型
|
| 114 |
+
# --------------------------------------------------
|
| 115 |
def load_model(ckpt_name: str):
|
| 116 |
+
"""Load model only when `ckpt_name` changes."""
|
| 117 |
+
global model, current_ckpt, current_meta
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
+
if ckpt_name == current_ckpt and model is not None:
|
| 120 |
+
return
|
| 121 |
|
| 122 |
+
print(f"\n🔄 Switching to {ckpt_name} ...")
|
| 123 |
+
meta = CKPT_META[ckpt_name]
|
| 124 |
+
ckpt_file = hf_hub_download(
|
| 125 |
repo_id=REPO_ID,
|
| 126 |
+
filename=HF_FILENAMES[ckpt_name],
|
| 127 |
+
local_dir=LOCAL_CKPT_DIR, force_download=False
|
|
|
|
| 128 |
)
|
| 129 |
+
print(f"Checkpoint: {ckpt_file}")
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
+
# Build model structure
|
| 132 |
model = SwinClassifier(
|
| 133 |
MODEL_NAME,
|
| 134 |
+
num_classes = meta["n_cls"],
|
| 135 |
+
pretrained = False,
|
| 136 |
+
head_version = meta["head"]
|
| 137 |
).to(device)
|
| 138 |
|
| 139 |
+
# compatible load
|
| 140 |
+
state = torch.load(ckpt_file, map_location=device, weights_only=False)
|
| 141 |
model.load_state_dict(state.get("model_state_dict", state), strict=True)
|
| 142 |
model.eval()
|
|
|
|
|
|
|
| 143 |
|
| 144 |
+
current_ckpt, current_meta = ckpt_name, meta
|
| 145 |
+
print(f"✅ {ckpt_name} loaded (classes = {meta['n_cls']}).")
|
| 146 |
+
|
| 147 |
+
# --------------------------------------------------
|
| 148 |
+
# 5. Transform 工厂
|
| 149 |
+
# --------------------------------------------------
|
| 150 |
def build_transform(is_training: bool, interpolation: str):
|
| 151 |
+
if model is None: raise RuntimeError("Model not loaded yet.")
|
|
|
|
| 152 |
cfg = model.data_config.copy()
|
| 153 |
cfg.update(dict(interpolation=interpolation))
|
| 154 |
return timm.data.create_transform(**cfg, is_training=is_training)
|
| 155 |
|
| 156 |
+
# --------------------------------------------------
|
| 157 |
+
# 6. Inference
|
| 158 |
+
# --------------------------------------------------
|
| 159 |
+
@torch.no_grad()
|
| 160 |
+
def predict(image: Image.Image,
|
| 161 |
+
ckpt_name: str,
|
| 162 |
+
interpolation: str = "bicubic"):
|
| 163 |
|
| 164 |
+
if image is None: return None
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
+
load_model(ckpt_name)
|
| 167 |
+
tfm = build_transform(False, interpolation)
|
| 168 |
+
inp = tfm(image).unsqueeze(0).to(device)
|
| 169 |
|
| 170 |
+
probs = F.softmax(model(inp), dim=1)[0].cpu()
|
| 171 |
+
class_names = current_meta["names"]
|
| 172 |
|
| 173 |
+
# 保证 gr.Label 在 2 / 4 类都能正常显示
|
| 174 |
+
return {class_names[i]: float(probs[i])
|
| 175 |
+
for i in range(len(class_names))}
|
| 176 |
|
| 177 |
+
# --------------------------------------------------
|
| 178 |
+
# 7. Gradio UI
|
| 179 |
+
# --------------------------------------------------
|
| 180 |
+
def launch():
|
| 181 |
+
load_model(DEFAULT_CKPT) # 预加载
|
| 182 |
|
| 183 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 184 |
+
gr.Markdown("# 🖼️ Swin-Large — AI / Non-AI Detector (V2-V7)")
|
| 185 |
+
gr.Markdown(
|
| 186 |
+
"Choose a model checkpoint on the left, upload an image, "
|
| 187 |
+
"and click **Run** to see predictions. V7 outputs 4 classes."
|
| 188 |
+
)
|
| 189 |
|
| 190 |
with gr.Row():
|
| 191 |
with gr.Column(scale=1):
|
| 192 |
+
in_img = gr.Image(type="pil", label="Upload Image")
|
| 193 |
run_btn = gr.Button("🚀 Run", variant="primary")
|
| 194 |
|
| 195 |
+
sel_ckpt = gr.Dropdown(
|
| 196 |
+
list(HF_FILENAMES.keys()),
|
| 197 |
+
value=DEFAULT_CKPT, label="Checkpoint"
|
| 198 |
)
|
| 199 |
+
sel_interp = gr.Radio(
|
| 200 |
+
["bilinear", "bicubic", "nearest"],
|
| 201 |
+
value="bicubic", label="Resize Interpolation"
|
| 202 |
)
|
| 203 |
|
| 204 |
+
with gr.Column(scale=1):
|
| 205 |
+
# num_top_classes 设为 4,兼容 2-class / 4-class
|
| 206 |
+
out_lbl = gr.Label(num_top_classes=4, label="Predictions")
|
|
|
|
| 207 |
|
| 208 |
run_btn.click(
|
| 209 |
+
predict,
|
| 210 |
+
inputs=[in_img, sel_ckpt, sel_interp],
|
| 211 |
outputs=[out_lbl]
|
| 212 |
)
|
| 213 |
|
| 214 |
+
# optional example folder
|
| 215 |
+
if not os.path.exists("examples"):
|
| 216 |
+
os.makedirs("examples")
|
| 217 |
+
print("Put some jpg/png files inside ./examples for demo examples")
|
|
|
|
| 218 |
|
| 219 |
+
example_files = [os.path.join("examples", f)
|
| 220 |
+
for f in os.listdir("examples")
|
| 221 |
+
if f.lower().endswith(('.png', '.jpg', '.jpeg'))]
|
| 222 |
if example_files:
|
| 223 |
gr.Examples(
|
| 224 |
examples=[[f, DEFAULT_CKPT, "bicubic"] for f in example_files],
|
| 225 |
+
inputs=[in_img, sel_ckpt, sel_interp],
|
| 226 |
outputs=[out_lbl],
|
| 227 |
+
fn=predict,
|
| 228 |
cache_examples=False,
|
| 229 |
)
|
| 230 |
|
| 231 |
demo.launch()
|
| 232 |
|
| 233 |
+
# --------------------------------------------------
|
| 234 |
if __name__ == "__main__":
|
| 235 |
+
launch()
|