Spaces:
Running
on
Zero
Running
on
Zero
| from typing import Union, Tuple | |
| import torch | |
| from diffusers import UNetSpatioTemporalConditionModel | |
| from diffusers.models.unets.unet_spatio_temporal_condition import UNetSpatioTemporalConditionOutput | |
| class DiffusersUNetSpatioTemporalConditionModelDepthCrafter( | |
| UNetSpatioTemporalConditionModel | |
| ): | |
| def forward( | |
| self, | |
| sample: torch.Tensor, | |
| timestep: Union[torch.Tensor, float, int], | |
| encoder_hidden_states: torch.Tensor, | |
| added_time_ids: torch.Tensor, | |
| return_dict: bool = True, | |
| ) -> Union[UNetSpatioTemporalConditionOutput, Tuple]: | |
| # 1. time | |
| timesteps = timestep | |
| if not torch.is_tensor(timesteps): | |
| # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
| # This would be a good case for the `match` statement (Python 3.10+) | |
| is_mps = sample.device.type == "mps" | |
| if isinstance(timestep, float): | |
| dtype = torch.float32 if is_mps else torch.float64 | |
| else: | |
| dtype = torch.int32 if is_mps else torch.int64 | |
| timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
| elif len(timesteps.shape) == 0: | |
| timesteps = timesteps[None].to(sample.device) | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| batch_size, num_frames = sample.shape[:2] | |
| timesteps = timesteps.expand(batch_size) | |
| t_emb = self.time_proj(timesteps) | |
| # `Timesteps` does not contain any weights and will always return f32 tensors | |
| # but time_embedding might actually be running in fp16. so we need to cast here. | |
| # there might be better ways to encapsulate this. | |
| t_emb = t_emb.to(dtype=self.conv_in.weight.dtype) | |
| emb = self.time_embedding(t_emb) # [batch_size * num_frames, channels] | |
| time_embeds = self.add_time_proj(added_time_ids.flatten()) | |
| time_embeds = time_embeds.reshape((batch_size, -1)) | |
| time_embeds = time_embeds.to(emb.dtype) | |
| aug_emb = self.add_embedding(time_embeds) | |
| emb = emb + aug_emb | |
| # Flatten the batch and frames dimensions | |
| # sample: [batch, frames, channels, height, width] -> [batch * frames, channels, height, width] | |
| sample = sample.flatten(0, 1) | |
| # Repeat the embeddings num_video_frames times | |
| # emb: [batch, channels] -> [batch * frames, channels] | |
| emb = emb.repeat_interleave(num_frames, dim=0) | |
| # encoder_hidden_states: [batch, frames, channels] -> [batch * frames, 1, channels] | |
| encoder_hidden_states = encoder_hidden_states.flatten(0, 1).unsqueeze(1) | |
| # 2. pre-process | |
| sample = sample.to(dtype=self.conv_in.weight.dtype) | |
| assert sample.dtype == self.conv_in.weight.dtype, ( | |
| f"sample.dtype: {sample.dtype}, " | |
| f"self.conv_in.weight.dtype: {self.conv_in.weight.dtype}" | |
| ) | |
| sample = self.conv_in(sample) | |
| image_only_indicator = torch.zeros( | |
| batch_size, num_frames, dtype=sample.dtype, device=sample.device | |
| ) | |
| down_block_res_samples = (sample,) | |
| for downsample_block in self.down_blocks: | |
| if ( | |
| hasattr(downsample_block, "has_cross_attention") | |
| and downsample_block.has_cross_attention | |
| ): | |
| sample, res_samples = downsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| image_only_indicator=image_only_indicator, | |
| ) | |
| else: | |
| sample, res_samples = downsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| image_only_indicator=image_only_indicator, | |
| ) | |
| down_block_res_samples += res_samples | |
| # 4. mid | |
| sample = self.mid_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| image_only_indicator=image_only_indicator, | |
| ) | |
| # 5. up | |
| for i, upsample_block in enumerate(self.up_blocks): | |
| res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | |
| down_block_res_samples = down_block_res_samples[ | |
| : -len(upsample_block.resnets) | |
| ] | |
| if ( | |
| hasattr(upsample_block, "has_cross_attention") | |
| and upsample_block.has_cross_attention | |
| ): | |
| sample = upsample_block( | |
| hidden_states=sample, | |
| res_hidden_states_tuple=res_samples, | |
| temb=emb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| image_only_indicator=image_only_indicator, | |
| ) | |
| else: | |
| sample = upsample_block( | |
| hidden_states=sample, | |
| res_hidden_states_tuple=res_samples, | |
| temb=emb, | |
| image_only_indicator=image_only_indicator, | |
| ) | |
| # 6. post-process | |
| sample = self.conv_norm_out(sample) | |
| sample = self.conv_act(sample) | |
| sample = self.conv_out(sample) | |
| # 7. Reshape back to original shape | |
| sample = sample.reshape(batch_size, num_frames, *sample.shape[1:]) | |
| if not return_dict: | |
| return (sample,) | |
| return UNetSpatioTemporalConditionOutput(sample=sample) | |