Spaces:
Running
on
Zero
Running
on
Zero
| # Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT | |
| # except for the third-party components listed below. | |
| # Hunyuan 3D does not impose any additional limitations beyond what is outlined | |
| # in the repsective licenses of these third-party components. | |
| # Users must comply with all terms and conditions of original licenses of these third-party | |
| # components and must ensure that the usage of the third party components adheres to | |
| # all relevant laws and regulations. | |
| # For avoidance of doubts, Hunyuan 3D means the large language models and | |
| # their software and algorithms, including trained model weights, parameters (including | |
| # optimizer states), machine-learning model code, inference-enabling code, training-enabling code, | |
| # fine-tuning enabling code and other elements of the foregoing made publicly available | |
| # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. | |
| from typing import Any, Dict, Optional | |
| from diffusers.models import AutoencoderKL, UNet2DConditionModel | |
| from diffusers.schedulers import KarrasDiffusionSchedulers | |
| import numpy | |
| import torch | |
| import torch.utils.checkpoint | |
| import torch.distributed | |
| import numpy as np | |
| import transformers | |
| from PIL import Image | |
| from einops import rearrange | |
| from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection | |
| from typing import Any, Callable, Dict, List, Optional, Union, Tuple | |
| import diffusers | |
| from diffusers import ( | |
| AutoencoderKL, | |
| DiffusionPipeline, | |
| UNet2DConditionModel, | |
| ) | |
| from diffusers.image_processor import VaeImageProcessor | |
| from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import ( | |
| StableDiffusionPipeline, | |
| retrieve_timesteps, | |
| rescale_noise_cfg, | |
| ) | |
| from diffusers.utils import deprecate | |
| from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback | |
| from diffusers.image_processor import PipelineImageInput | |
| from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput | |
| from .unet.modules import UNet2p5DConditionModel | |
| from .unet.attn_processor import SelfAttnProcessor2_0, RefAttnProcessor2_0, PoseRoPEAttnProcessor2_0 | |
| __all__ = [ | |
| "HunyuanPaintPipeline", | |
| "UNet2p5DConditionModel", | |
| "SelfAttnProcessor2_0", | |
| "RefAttnProcessor2_0", | |
| "PoseRoPEAttnProcessor2_0", | |
| ] | |
| def to_rgb_image(maybe_rgba: Image.Image): | |
| if maybe_rgba.mode == "RGB": | |
| return maybe_rgba | |
| elif maybe_rgba.mode == "RGBA": | |
| rgba = maybe_rgba | |
| img = numpy.random.randint(127, 128, size=[rgba.size[1], rgba.size[0], 3], dtype=numpy.uint8) | |
| img = Image.fromarray(img, "RGB") | |
| img.paste(rgba, mask=rgba.getchannel("A")) | |
| return img | |
| else: | |
| raise ValueError("Unsupported image type.", maybe_rgba.mode) | |
| class HunyuanPaintPipeline(StableDiffusionPipeline): | |
| """Custom pipeline for multiview PBR texture generation. | |
| Extends Stable Diffusion with: | |
| - Material-specific conditioning | |
| - Multiview processing | |
| - Position-aware attention | |
| - 2.5D UNet integration | |
| """ | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| scheduler: KarrasDiffusionSchedulers, | |
| feature_extractor: CLIPImageProcessor, | |
| safety_checker=None, | |
| use_torch_compile=False, | |
| ): | |
| DiffusionPipeline.__init__(self) | |
| safety_checker = None | |
| self.register_modules( | |
| vae=torch.compile(vae) if use_torch_compile else vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| scheduler=scheduler, | |
| safety_checker=safety_checker, | |
| feature_extractor=torch.compile(feature_extractor) if use_torch_compile else feature_extractor, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| if isinstance(self.unet, UNet2DConditionModel): | |
| self.unet = UNet2p5DConditionModel(self.unet, None, self.scheduler) | |
| def eval(self): | |
| self.unet.eval() | |
| self.vae.eval() | |
| def set_pbr_settings(self, pbr_settings: List[str]): | |
| self.pbr_settings = pbr_settings | |
| def set_learned_parameters(self): | |
| """Configures parameter freezing strategy. | |
| Freezes: | |
| - Standard attention layers | |
| - Dual-stream reference UNet | |
| Unfreezes: | |
| - Material-specific parameters | |
| - DINO integration components | |
| """ | |
| freezed_names = ["attn1", "unet_dual"] | |
| added_learned_names = ["albedo", "mr", "dino"] | |
| for name, params in self.unet.named_parameters(): | |
| if any(freeze_name in name for freeze_name in freezed_names) and all( | |
| learned_name not in name for learned_name in added_learned_names | |
| ): | |
| params.requires_grad = False | |
| else: | |
| params.requires_grad = True | |
| def prepare(self): | |
| if isinstance(self.unet, UNet2DConditionModel): | |
| self.unet = UNet2p5DConditionModel(self.unet, None, self.scheduler).eval() | |
| def encode_images(self, images): | |
| """Encodes multiview image batches into latent space. | |
| Args: | |
| images: Input images [B, N_views, C, H, W] | |
| Returns: | |
| torch.Tensor: Latent representations [B, N_views, C, H_latent, W_latent] | |
| """ | |
| B = images.shape[0] | |
| images = rearrange(images, "b n c h w -> (b n) c h w") | |
| dtype = next(self.vae.parameters()).dtype | |
| images = (images - 0.5) * 2.0 | |
| posterior = self.vae.encode(images.to(dtype)).latent_dist | |
| latents = posterior.sample() * self.vae.config.scaling_factor | |
| latents = rearrange(latents, "(b n) c h w -> b n c h w", b=B) | |
| return latents | |
| def __call__( | |
| self, | |
| images=None, | |
| prompt=None, | |
| negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast", | |
| *args, | |
| num_images_per_prompt: Optional[int] = 1, | |
| guidance_scale=3.0, | |
| output_type: Optional[str] = "pil", | |
| width=512, | |
| height=512, | |
| num_inference_steps=15, | |
| return_dict=True, | |
| sync_condition=None, | |
| **cached_condition, | |
| ): | |
| """Main generation method for multiview PBR textures. | |
| Steps: | |
| 1. Input validation and preparation | |
| 2. Reference image encoding | |
| 3. Condition processing (normal/position maps) | |
| 4. Prompt embedding setup | |
| 5. Classifier-free guidance preparation | |
| 6. Diffusion sampling loop | |
| Args: | |
| images: List of reference PIL images | |
| prompt: Text prompt (overridden by learned embeddings) | |
| cached_condition: Dictionary containing: | |
| - images_normal: Normal maps (PIL or tensor) | |
| - images_position: Position maps (PIL or tensor) | |
| Returns: | |
| List[PIL.Image]: Generated multiview PBR textures | |
| """ | |
| self.prepare() | |
| if images is None: | |
| raise ValueError("Inputting embeddings not supported for this pipeline. Please pass an image.") | |
| assert not isinstance(images, torch.Tensor) | |
| if not isinstance(images, List): | |
| images = [images] | |
| images = [to_rgb_image(image) for image in images] | |
| images_vae = [torch.tensor(np.array(image) / 255.0) for image in images] | |
| images_vae = [image_vae.unsqueeze(0).permute(0, 3, 1, 2).unsqueeze(0) for image_vae in images_vae] | |
| images_vae = torch.cat(images_vae, dim=1) | |
| images_vae = images_vae.to(device=self.vae.device, dtype=self.unet.dtype) | |
| batch_size = images_vae.shape[0] | |
| N_ref = images_vae.shape[1] | |
| assert batch_size == 1 | |
| assert num_images_per_prompt == 1 | |
| if self.unet.use_ra: | |
| ref_latents = self.encode_images(images_vae) | |
| cached_condition["ref_latents"] = ref_latents | |
| def convert_pil_list_to_tensor(images): | |
| bg_c = [1.0, 1.0, 1.0] | |
| images_tensor = [] | |
| for batch_imgs in images: | |
| view_imgs = [] | |
| for pil_img in batch_imgs: | |
| img = numpy.asarray(pil_img, dtype=numpy.float32) / 255.0 | |
| if img.shape[2] > 3: | |
| alpha = img[:, :, 3:] | |
| img = img[:, :, :3] * alpha + bg_c * (1 - alpha) | |
| img = torch.from_numpy(img).permute(2, 0, 1).unsqueeze(0).contiguous().half().to("cuda") | |
| view_imgs.append(img) | |
| view_imgs = torch.cat(view_imgs, dim=0) | |
| images_tensor.append(view_imgs.unsqueeze(0)) | |
| images_tensor = torch.cat(images_tensor, dim=0) | |
| return images_tensor | |
| if "images_normal" in cached_condition: | |
| if isinstance(cached_condition["images_normal"], List): | |
| cached_condition["images_normal"] = convert_pil_list_to_tensor(cached_condition["images_normal"]) | |
| cached_condition["embeds_normal"] = self.encode_images(cached_condition["images_normal"]) | |
| if "images_position" in cached_condition: | |
| if isinstance(cached_condition["images_position"], List): | |
| cached_condition["images_position"] = convert_pil_list_to_tensor(cached_condition["images_position"]) | |
| cached_condition["position_maps"] = cached_condition["images_position"] | |
| cached_condition["embeds_position"] = self.encode_images(cached_condition["images_position"]) | |
| if self.unet.use_learned_text_clip: | |
| all_shading_tokens = [] | |
| for token in self.unet.pbr_setting: | |
| all_shading_tokens.append( | |
| getattr(self.unet, f"learned_text_clip_{token}").unsqueeze(dim=0).repeat(batch_size, 1, 1) | |
| ) | |
| prompt_embeds = torch.stack(all_shading_tokens, dim=1) | |
| negative_prompt_embeds = torch.stack(all_shading_tokens, dim=1) | |
| # negative_prompt_embeds = torch.zeros_like(prompt_embeds) | |
| else: | |
| if prompt is None: | |
| prompt = "high quality" | |
| if isinstance(prompt, str): | |
| prompt = [prompt for _ in range(batch_size)] | |
| device = self._execution_device | |
| prompt_embeds, _ = self.encode_prompt( | |
| prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=False | |
| ) | |
| if isinstance(negative_prompt, str): | |
| negative_prompt = [negative_prompt for _ in range(batch_size)] | |
| if negative_prompt is not None: | |
| negative_prompt_embeds, _ = self.encode_prompt( | |
| negative_prompt, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| do_classifier_free_guidance=False, | |
| ) | |
| else: | |
| negative_prompt_embeds = torch.zeros_like(prompt_embeds) | |
| if guidance_scale > 1: | |
| if self.unet.use_ra: | |
| cached_condition["ref_latents"] = cached_condition["ref_latents"].repeat( | |
| 3, *([1] * (cached_condition["ref_latents"].dim() - 1)) | |
| ) | |
| cached_condition["ref_scale"] = torch.as_tensor([0.0, 1.0, 1.0]).to(cached_condition["ref_latents"]) | |
| if self.unet.use_dino: | |
| zero_states = torch.zeros_like(cached_condition["dino_hidden_states"]) | |
| cached_condition["dino_hidden_states"] = torch.cat( | |
| [zero_states, zero_states, cached_condition["dino_hidden_states"]] | |
| ) | |
| del zero_states | |
| if "embeds_normal" in cached_condition: | |
| cached_condition["embeds_normal"] = cached_condition["embeds_normal"].repeat( | |
| 3, *([1] * (cached_condition["embeds_normal"].dim() - 1)) | |
| ) | |
| if "embeds_position" in cached_condition: | |
| cached_condition["embeds_position"] = cached_condition["embeds_position"].repeat( | |
| 3, *([1] * (cached_condition["embeds_position"].dim() - 1)) | |
| ) | |
| if "position_maps" in cached_condition: | |
| cached_condition["position_maps"] = cached_condition["position_maps"].repeat( | |
| 3, *([1] * (cached_condition["position_maps"].dim() - 1)) | |
| ) | |
| images = self.denoise( | |
| None, | |
| *args, | |
| cross_attention_kwargs=None, | |
| guidance_scale=guidance_scale, | |
| num_images_per_prompt=num_images_per_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| num_inference_steps=num_inference_steps, | |
| output_type=output_type, | |
| width=width, | |
| height=height, | |
| return_dict=return_dict, | |
| **cached_condition, | |
| ) | |
| return images | |
| def denoise( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| timesteps: List[int] = None, | |
| sigmas: List[float] = None, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.Tensor] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| ip_adapter_image: Optional[PipelineImageInput] = None, | |
| ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| guidance_rescale: float = 0.0, | |
| clip_skip: Optional[int] = None, | |
| callback_on_step_end: Optional[ | |
| Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] | |
| ] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| **kwargs, | |
| ): | |
| r""" | |
| The call function to the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
| height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
| The width in pixels of the generated image. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
| in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
| passed will be used. Must be in descending order. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in | |
| their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed | |
| will be used. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| A higher guidance scale value encourages the model to generate images closely linked to the text | |
| `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
| pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
| to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
| generation deterministic. | |
| latents (`torch.Tensor`, *optional*): | |
| Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor is generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
| provided, text embeddings are generated from the `prompt` input argument. | |
| negative_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
| not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
| ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. | |
| ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): | |
| Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of | |
| IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should | |
| contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not | |
| provided, embeddings are computed from the `ip_adapter_image` input argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | |
| [`self.processor`] | |
| (https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| guidance_rescale (`float`, *optional*, defaults to 0.0): | |
| Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are | |
| Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when | |
| using zero terminal SNR. | |
| clip_skip (`int`, *optional*): | |
| Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
| the output of the pre-final layer will be used for computing the prompt embeddings. | |
| callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): | |
| A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of | |
| each denoising step during the inference. with the following arguments: `callback_on_step_end(self: | |
| DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a | |
| list of all tensors as specified by `callback_on_step_end_tensor_inputs`. | |
| callback_on_step_end_tensor_inputs (`List`, *optional*): | |
| The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
| will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
| `._callback_tensor_inputs` attribute of your pipeline class. | |
| Examples: | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
| otherwise a `tuple` is returned where the first element is a list with the generated images and the | |
| second element is a list of `bool`s indicating whether the corresponding generated image contains | |
| "not-safe-for-work" (nsfw) content. | |
| Core denoising procedure for multiview PBR texture generation. | |
| Handles the complete diffusion process including: | |
| - Input validation and preparation | |
| - Timestep scheduling | |
| - Latent noise initialization | |
| - Iterative denoising with specialized guidance | |
| - Output decoding and post-processing | |
| Key innovations: | |
| 1. Triple-batch classifier-free guidance: | |
| - Negative (unconditional) | |
| - Reference-conditioned | |
| - Full-conditioned | |
| 2. View-dependent guidance scaling: | |
| - Adjusts influence based on camera azimuth | |
| 3. PBR-aware latent organization: | |
| - Maintains material/view separation throughout | |
| 4. Optimized VRAM management: | |
| - Selective tensor reshaping | |
| Processing Stages: | |
| 1. Setup & Validation: Configures pipeline components and validates inputs | |
| 2. Prompt Encoding: Processes text/material conditioning | |
| 3. Latent Initialization: Prepares noise for denoising process | |
| 4. Iterative Denoising: | |
| a) Scales and organizes latent variables | |
| b) Predicts noise at current timestep | |
| c) Applies view-dependent guidance | |
| d) Computes previous latent state | |
| 5. Output Decoding: Converts latents to final images | |
| 6. Cleanup: Releases resources and formats output | |
| """ | |
| callback = kwargs.pop("callback", None) | |
| callback_steps = kwargs.pop("callback_steps", None) | |
| # open cache | |
| kwargs["cache"] = {} | |
| if callback is not None: | |
| deprecate( | |
| "callback", | |
| "1.0.0", | |
| "Passing `callback` as an input argument to `__call__` is deprecated," | |
| "consider using `callback_on_step_end`", | |
| ) | |
| if callback_steps is not None: | |
| deprecate( | |
| "callback_steps", | |
| "1.0.0", | |
| "Passing `callback` as an input argument to `__call__` is deprecated," | |
| "consider using `callback_on_step_end`", | |
| ) | |
| if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | |
| callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | |
| # 0. Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| # to deal with lora scaling and other possible forward hooks | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| height, | |
| width, | |
| callback_steps, | |
| negative_prompt, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| ip_adapter_image, | |
| ip_adapter_image_embeds, | |
| callback_on_step_end_tensor_inputs, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._guidance_rescale = guidance_rescale | |
| self._clip_skip = clip_skip | |
| self._cross_attention_kwargs = cross_attention_kwargs | |
| self._interrupt = False | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # 3. Encode input prompt | |
| lora_scale = self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None | |
| """ | |
| prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| self.do_classifier_free_guidance, | |
| negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| lora_scale=lora_scale, | |
| clip_skip=self.clip_skip, | |
| )' | |
| """ | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| if self.do_classifier_free_guidance: | |
| # prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds, prompt_embeds]) | |
| if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
| image_embeds = self.prepare_ip_adapter_image_embeds( | |
| ip_adapter_image, | |
| ip_adapter_image_embeds, | |
| device, | |
| batch_size * num_images_per_prompt, | |
| self.do_classifier_free_guidance, | |
| ) | |
| # 4. Prepare timesteps | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, num_inference_steps, device, timesteps, sigmas | |
| ) | |
| assert num_images_per_prompt == 1 | |
| # 5. Prepare latent variables | |
| n_pbr = len(self.unet.pbr_setting) | |
| num_channels_latents = self.unet.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * kwargs["num_in_batch"] * n_pbr, # num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 6.1 Add image embeds for IP-Adapter | |
| added_cond_kwargs = ( | |
| {"image_embeds": image_embeds} | |
| if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) | |
| else None | |
| ) | |
| # 6.2 Optionally get Guidance Scale Embedding | |
| timestep_cond = None | |
| if self.unet.config.time_cond_proj_dim is not None: | |
| guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) | |
| timestep_cond = self.get_guidance_scale_embedding( | |
| guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim | |
| ).to(device=device, dtype=latents.dtype) | |
| # 7. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| self._num_timesteps = len(timesteps) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| # expand the latents if we are doing classifier free guidance | |
| latents = rearrange( | |
| latents, "(b n_pbr n) c h w -> b n_pbr n c h w", n=kwargs["num_in_batch"], n_pbr=n_pbr | |
| ) | |
| # latent_model_input = torch.cat([latents] * 3) if self.do_classifier_free_guidance else latents | |
| latent_model_input = latents.repeat(3, 1, 1, 1, 1, 1) if self.do_classifier_free_guidance else latents | |
| latent_model_input = rearrange(latent_model_input, "b n_pbr n c h w -> (b n_pbr n) c h w") | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| latent_model_input = rearrange( | |
| latent_model_input, "(b n_pbr n) c h w ->b n_pbr n c h w", n=kwargs["num_in_batch"], n_pbr=n_pbr | |
| ) | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| timestep_cond=timestep_cond, | |
| cross_attention_kwargs=self.cross_attention_kwargs, | |
| added_cond_kwargs=added_cond_kwargs, | |
| return_dict=False, | |
| **kwargs, | |
| )[0] | |
| latents = rearrange(latents, "b n_pbr n c h w -> (b n_pbr n) c h w") | |
| # perform guidance | |
| if self.do_classifier_free_guidance: | |
| # noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| # noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| noise_pred_uncond, noise_pred_ref, noise_pred_full = noise_pred.chunk(3) | |
| if "camera_azims" in kwargs.keys(): | |
| camera_azims = kwargs["camera_azims"] | |
| else: | |
| camera_azims = [0] * kwargs["num_in_batch"] | |
| def cam_mapping(azim): | |
| if azim < 90 and azim >= 0: | |
| return float(azim) / 90.0 + 1 | |
| elif azim >= 90 and azim < 330: | |
| return 2.0 | |
| else: | |
| return -float(azim) / 90.0 + 5.0 | |
| view_scale_tensor = ( | |
| torch.from_numpy(np.asarray([cam_mapping(azim) for azim in camera_azims])) | |
| .unsqueeze(0) | |
| .repeat(n_pbr, 1) | |
| .view(-1) | |
| .to(noise_pred_uncond)[:, None, None, None] | |
| ) | |
| noise_pred = noise_pred_uncond + self.guidance_scale * view_scale_tensor * ( | |
| noise_pred_ref - noise_pred_uncond | |
| ) | |
| noise_pred += self.guidance_scale * view_scale_tensor * (noise_pred_full - noise_pred_ref) | |
| if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: | |
| # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
| noise_pred = rescale_noise_cfg(noise_pred, noise_pred_ref, guidance_rescale=self.guidance_rescale) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step( | |
| noise_pred, t, latents[:, :num_channels_latents, :, :], **extra_step_kwargs, return_dict=False | |
| )[0] | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| step_idx = i // getattr(self.scheduler, "order", 1) | |
| callback(step_idx, t, latents) | |
| if not output_type == "latent": | |
| image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0] | |
| image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
| else: | |
| image = latents | |
| has_nsfw_concept = None | |
| if has_nsfw_concept is None: | |
| do_denormalize = [True] * image.shape[0] | |
| else: | |
| do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
| image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image, has_nsfw_concept) | |
| return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |