Spaces:
Running
on
Zero
Running
on
Zero
| # Open Source Model Licensed under the Apache License Version 2.0 | |
| # and Other Licenses of the Third-Party Components therein: | |
| # The below Model in this distribution may have been modified by THL A29 Limited | |
| # ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited. | |
| # Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved. | |
| # The below software and/or models in this distribution may have been | |
| # modified by THL A29 Limited ("Tencent Modifications"). | |
| # All Tencent Modifications are Copyright (C) THL A29 Limited. | |
| # Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT | |
| # except for the third-party components listed below. | |
| # Hunyuan 3D does not impose any additional limitations beyond what is outlined | |
| # in the repsective licenses of these third-party components. | |
| # Users must comply with all terms and conditions of original licenses of these third-party | |
| # components and must ensure that the usage of the third party components adheres to | |
| # all relevant laws and regulations. | |
| # For avoidance of doubts, Hunyuan 3D means the large language models and | |
| # their software and algorithms, including trained model weights, parameters (including | |
| # optimizer states), machine-learning model code, inference-enabling code, training-enabling code, | |
| # fine-tuning enabling code and other elements of the foregoing made publicly available | |
| # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. | |
| import torch | |
| import torch.nn as nn | |
| from torchvision import transforms | |
| from transformers import ( | |
| CLIPVisionModelWithProjection, | |
| CLIPVisionConfig, | |
| Dinov2Model, | |
| Dinov2Config, | |
| ) | |
| class ImageEncoder(nn.Module): | |
| def __init__( | |
| self, | |
| version=None, | |
| config=None, | |
| use_cls_token=True, | |
| image_size=224, | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| if config is None: | |
| self.model = self.MODEL_CLASS.from_pretrained(version) | |
| else: | |
| self.model = self.MODEL_CLASS(self.MODEL_CONFIG_CLASS.from_dict(config)) | |
| self.model.eval() | |
| self.model.requires_grad_(False) | |
| self.use_cls_token = use_cls_token | |
| self.size = image_size // 14 | |
| self.num_patches = (image_size // 14) ** 2 | |
| if self.use_cls_token: | |
| self.num_patches += 1 | |
| self.transform = transforms.Compose( | |
| [ | |
| transforms.Resize(image_size, transforms.InterpolationMode.BILINEAR, antialias=True), | |
| transforms.CenterCrop(image_size), | |
| transforms.Normalize( | |
| mean=self.mean, | |
| std=self.std, | |
| ), | |
| ] | |
| ) | |
| def forward(self, image, mask=None, value_range=(-1, 1)): | |
| if value_range is not None: | |
| low, high = value_range | |
| image = (image - low) / (high - low) | |
| image = image.to(self.model.device, dtype=self.model.dtype) | |
| inputs = self.transform(image) | |
| outputs = self.model(inputs) | |
| last_hidden_state = outputs.last_hidden_state | |
| if not self.use_cls_token: | |
| last_hidden_state = last_hidden_state[:, 1:, :] | |
| return last_hidden_state | |
| def unconditional_embedding(self, batch_size): | |
| device = next(self.model.parameters()).device | |
| dtype = next(self.model.parameters()).dtype | |
| zero = torch.zeros( | |
| batch_size, | |
| self.num_patches, | |
| self.model.config.hidden_size, | |
| device=device, | |
| dtype=dtype, | |
| ) | |
| return zero | |
| class CLIPImageEncoder(ImageEncoder): | |
| MODEL_CLASS = CLIPVisionModelWithProjection | |
| MODEL_CONFIG_CLASS = CLIPVisionConfig | |
| mean = [0.48145466, 0.4578275, 0.40821073] | |
| std = [0.26862954, 0.26130258, 0.27577711] | |
| class DinoImageEncoder(ImageEncoder): | |
| MODEL_CLASS = Dinov2Model | |
| MODEL_CONFIG_CLASS = Dinov2Config | |
| mean = [0.485, 0.456, 0.406] | |
| std = [0.229, 0.224, 0.225] | |
| def build_image_encoder(config): | |
| if config['type'] == 'CLIPImageEncoder': | |
| return CLIPImageEncoder(**config['kwargs']) | |
| elif config['type'] == 'DinoImageEncoder': | |
| return DinoImageEncoder(**config['kwargs']) | |
| else: | |
| raise ValueError(f'Unknown image encoder type: {config["type"]}') | |
| class DualImageEncoder(nn.Module): | |
| def __init__( | |
| self, | |
| main_image_encoder, | |
| additional_image_encoder, | |
| ): | |
| super().__init__() | |
| self.main_image_encoder = build_image_encoder(main_image_encoder) | |
| self.additional_image_encoder = build_image_encoder(additional_image_encoder) | |
| def forward(self, image, mask=None): | |
| outputs = { | |
| 'main': self.main_image_encoder(image, mask=mask), | |
| 'additional': self.additional_image_encoder(image, mask=mask), | |
| } | |
| return outputs | |
| def unconditional_embedding(self, batch_size): | |
| outputs = { | |
| 'main': self.main_image_encoder.unconditional_embedding(batch_size), | |
| 'additional': self.additional_image_encoder.unconditional_embedding(batch_size), | |
| } | |
| return outputs | |
| class SingleImageEncoder(nn.Module): | |
| def __init__( | |
| self, | |
| main_image_encoder, | |
| ): | |
| super().__init__() | |
| self.main_image_encoder = build_image_encoder(main_image_encoder) | |
| def forward(self, image, mask=None): | |
| outputs = { | |
| 'main': self.main_image_encoder(image, mask=mask), | |
| } | |
| return outputs | |
| def unconditional_embedding(self, batch_size): | |
| outputs = { | |
| 'main': self.main_image_encoder.unconditional_embedding(batch_size), | |
| } | |
| return outputs | |