Spaces:
Running
on
Zero
Running
on
Zero
| # Open Source Model Licensed under the Apache License Version 2.0 | |
| # and Other Licenses of the Third-Party Components therein: | |
| # The below Model in this distribution may have been modified by THL A29 Limited | |
| # ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited. | |
| # Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved. | |
| # The below software and/or models in this distribution may have been | |
| # modified by THL A29 Limited ("Tencent Modifications"). | |
| # All Tencent Modifications are Copyright (C) THL A29 Limited. | |
| # Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT | |
| # except for the third-party components listed below. | |
| # Hunyuan 3D does not impose any additional limitations beyond what is outlined | |
| # in the repsective licenses of these third-party components. | |
| # Users must comply with all terms and conditions of original licenses of these third-party | |
| # components and must ensure that the usage of the third party components adheres to | |
| # all relevant laws and regulations. | |
| # For avoidance of doubts, Hunyuan 3D means the large language models and | |
| # their software and algorithms, including trained model weights, parameters (including | |
| # optimizer states), machine-learning model code, inference-enabling code, training-enabling code, | |
| # fine-tuning enabling code and other elements of the foregoing made publicly available | |
| # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. | |
| from typing import Tuple, List, Union, Optional | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from einops import rearrange, repeat | |
| from skimage import measure | |
| from tqdm import tqdm | |
| class FourierEmbedder(nn.Module): | |
| """The sin/cosine positional embedding. Given an input tensor `x` of shape [n_batch, ..., c_dim], it converts | |
| each feature dimension of `x[..., i]` into: | |
| [ | |
| sin(x[..., i]), | |
| sin(f_1*x[..., i]), | |
| sin(f_2*x[..., i]), | |
| ... | |
| sin(f_N * x[..., i]), | |
| cos(x[..., i]), | |
| cos(f_1*x[..., i]), | |
| cos(f_2*x[..., i]), | |
| ... | |
| cos(f_N * x[..., i]), | |
| x[..., i] # only present if include_input is True. | |
| ], here f_i is the frequency. | |
| Denote the space is [0 / num_freqs, 1 / num_freqs, 2 / num_freqs, 3 / num_freqs, ..., (num_freqs - 1) / num_freqs]. | |
| If logspace is True, then the frequency f_i is [2^(0 / num_freqs), ..., 2^(i / num_freqs), ...]; | |
| Otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)]. | |
| Args: | |
| num_freqs (int): the number of frequencies, default is 6; | |
| logspace (bool): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...], | |
| otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)]; | |
| input_dim (int): the input dimension, default is 3; | |
| include_input (bool): include the input tensor or not, default is True. | |
| Attributes: | |
| frequencies (torch.Tensor): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...], | |
| otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1); | |
| out_dim (int): the embedding size, if include_input is True, it is input_dim * (num_freqs * 2 + 1), | |
| otherwise, it is input_dim * num_freqs * 2. | |
| """ | |
| def __init__(self, | |
| num_freqs: int = 6, | |
| logspace: bool = True, | |
| input_dim: int = 3, | |
| include_input: bool = True, | |
| include_pi: bool = True) -> None: | |
| """The initialization""" | |
| super().__init__() | |
| if logspace: | |
| frequencies = 2.0 ** torch.arange( | |
| num_freqs, | |
| dtype=torch.float32 | |
| ) | |
| else: | |
| frequencies = torch.linspace( | |
| 1.0, | |
| 2.0 ** (num_freqs - 1), | |
| num_freqs, | |
| dtype=torch.float32 | |
| ) | |
| if include_pi: | |
| frequencies *= torch.pi | |
| self.register_buffer("frequencies", frequencies, persistent=False) | |
| self.include_input = include_input | |
| self.num_freqs = num_freqs | |
| self.out_dim = self.get_dims(input_dim) | |
| def get_dims(self, input_dim): | |
| temp = 1 if self.include_input or self.num_freqs == 0 else 0 | |
| out_dim = input_dim * (self.num_freqs * 2 + temp) | |
| return out_dim | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| """ Forward process. | |
| Args: | |
| x: tensor of shape [..., dim] | |
| Returns: | |
| embedding: an embedding of `x` of shape [..., dim * (num_freqs * 2 + temp)] | |
| where temp is 1 if include_input is True and 0 otherwise. | |
| """ | |
| if self.num_freqs > 0: | |
| embed = (x[..., None].contiguous() * self.frequencies).view(*x.shape[:-1], -1) | |
| if self.include_input: | |
| return torch.cat((x, embed.sin(), embed.cos()), dim=-1) | |
| else: | |
| return torch.cat((embed.sin(), embed.cos()), dim=-1) | |
| else: | |
| return x | |
| class DropPath(nn.Module): | |
| """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
| """ | |
| def __init__(self, drop_prob: float = 0., scale_by_keep: bool = True): | |
| super(DropPath, self).__init__() | |
| self.drop_prob = drop_prob | |
| self.scale_by_keep = scale_by_keep | |
| def forward(self, x): | |
| """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
| This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, | |
| the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... | |
| See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for | |
| changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use | |
| 'survival rate' as the argument. | |
| """ | |
| if self.drop_prob == 0. or not self.training: | |
| return x | |
| keep_prob = 1 - self.drop_prob | |
| shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets | |
| random_tensor = x.new_empty(shape).bernoulli_(keep_prob) | |
| if keep_prob > 0.0 and self.scale_by_keep: | |
| random_tensor.div_(keep_prob) | |
| return x * random_tensor | |
| def extra_repr(self): | |
| return f'drop_prob={round(self.drop_prob, 3):0.3f}' | |
| class MLP(nn.Module): | |
| def __init__( | |
| self, *, | |
| width: int, | |
| output_width: int = None, | |
| drop_path_rate: float = 0.0 | |
| ): | |
| super().__init__() | |
| self.width = width | |
| self.c_fc = nn.Linear(width, width * 4) | |
| self.c_proj = nn.Linear(width * 4, output_width if output_width is not None else width) | |
| self.gelu = nn.GELU() | |
| self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() | |
| def forward(self, x): | |
| return self.drop_path(self.c_proj(self.gelu(self.c_fc(x)))) | |
| class QKVMultiheadCrossAttention(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| heads: int, | |
| n_data: Optional[int] = None, | |
| width=None, | |
| qk_norm=False, | |
| norm_layer=nn.LayerNorm | |
| ): | |
| super().__init__() | |
| self.heads = heads | |
| self.n_data = n_data | |
| self.q_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity() | |
| self.k_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity() | |
| def forward(self, q, kv): | |
| _, n_ctx, _ = q.shape | |
| bs, n_data, width = kv.shape | |
| attn_ch = width // self.heads // 2 | |
| q = q.view(bs, n_ctx, self.heads, -1) | |
| kv = kv.view(bs, n_data, self.heads, -1) | |
| k, v = torch.split(kv, attn_ch, dim=-1) | |
| q = self.q_norm(q) | |
| k = self.k_norm(k) | |
| q, k, v = map(lambda t: rearrange(t, 'b n h d -> b h n d', h=self.heads), (q, k, v)) | |
| out = F.scaled_dot_product_attention(q, k, v).transpose(1, 2).reshape(bs, n_ctx, -1) | |
| return out | |
| class MultiheadCrossAttention(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| width: int, | |
| heads: int, | |
| qkv_bias: bool = True, | |
| n_data: Optional[int] = None, | |
| data_width: Optional[int] = None, | |
| norm_layer=nn.LayerNorm, | |
| qk_norm: bool = False | |
| ): | |
| super().__init__() | |
| self.n_data = n_data | |
| self.width = width | |
| self.heads = heads | |
| self.data_width = width if data_width is None else data_width | |
| self.c_q = nn.Linear(width, width, bias=qkv_bias) | |
| self.c_kv = nn.Linear(self.data_width, width * 2, bias=qkv_bias) | |
| self.c_proj = nn.Linear(width, width) | |
| self.attention = QKVMultiheadCrossAttention( | |
| heads=heads, | |
| n_data=n_data, | |
| width=width, | |
| norm_layer=norm_layer, | |
| qk_norm=qk_norm | |
| ) | |
| def forward(self, x, data): | |
| x = self.c_q(x) | |
| data = self.c_kv(data) | |
| x = self.attention(x, data) | |
| x = self.c_proj(x) | |
| return x | |
| class ResidualCrossAttentionBlock(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| n_data: Optional[int] = None, | |
| width: int, | |
| heads: int, | |
| data_width: Optional[int] = None, | |
| qkv_bias: bool = True, | |
| norm_layer=nn.LayerNorm, | |
| qk_norm: bool = False | |
| ): | |
| super().__init__() | |
| if data_width is None: | |
| data_width = width | |
| self.attn = MultiheadCrossAttention( | |
| n_data=n_data, | |
| width=width, | |
| heads=heads, | |
| data_width=data_width, | |
| qkv_bias=qkv_bias, | |
| norm_layer=norm_layer, | |
| qk_norm=qk_norm | |
| ) | |
| self.ln_1 = norm_layer(width, elementwise_affine=True, eps=1e-6) | |
| self.ln_2 = norm_layer(data_width, elementwise_affine=True, eps=1e-6) | |
| self.ln_3 = norm_layer(width, elementwise_affine=True, eps=1e-6) | |
| self.mlp = MLP(width=width) | |
| def forward(self, x: torch.Tensor, data: torch.Tensor): | |
| x = x + self.attn(self.ln_1(x), self.ln_2(data)) | |
| x = x + self.mlp(self.ln_3(x)) | |
| return x | |
| class QKVMultiheadAttention(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| heads: int, | |
| n_ctx: int, | |
| width=None, | |
| qk_norm=False, | |
| norm_layer=nn.LayerNorm | |
| ): | |
| super().__init__() | |
| self.heads = heads | |
| self.n_ctx = n_ctx | |
| self.q_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity() | |
| self.k_norm = norm_layer(width // heads, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity() | |
| def forward(self, qkv): | |
| bs, n_ctx, width = qkv.shape | |
| attn_ch = width // self.heads // 3 | |
| qkv = qkv.view(bs, n_ctx, self.heads, -1) | |
| q, k, v = torch.split(qkv, attn_ch, dim=-1) | |
| q = self.q_norm(q) | |
| k = self.k_norm(k) | |
| q, k, v = map(lambda t: rearrange(t, 'b n h d -> b h n d', h=self.heads), (q, k, v)) | |
| out = F.scaled_dot_product_attention(q, k, v).transpose(1, 2).reshape(bs, n_ctx, -1) | |
| return out | |
| class MultiheadAttention(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| n_ctx: int, | |
| width: int, | |
| heads: int, | |
| qkv_bias: bool, | |
| norm_layer=nn.LayerNorm, | |
| qk_norm: bool = False, | |
| drop_path_rate: float = 0.0 | |
| ): | |
| super().__init__() | |
| self.n_ctx = n_ctx | |
| self.width = width | |
| self.heads = heads | |
| self.c_qkv = nn.Linear(width, width * 3, bias=qkv_bias) | |
| self.c_proj = nn.Linear(width, width) | |
| self.attention = QKVMultiheadAttention( | |
| heads=heads, | |
| n_ctx=n_ctx, | |
| width=width, | |
| norm_layer=norm_layer, | |
| qk_norm=qk_norm | |
| ) | |
| self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() | |
| def forward(self, x): | |
| x = self.c_qkv(x) | |
| x = self.attention(x) | |
| x = self.drop_path(self.c_proj(x)) | |
| return x | |
| class ResidualAttentionBlock(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| n_ctx: int, | |
| width: int, | |
| heads: int, | |
| qkv_bias: bool = True, | |
| norm_layer=nn.LayerNorm, | |
| qk_norm: bool = False, | |
| drop_path_rate: float = 0.0, | |
| ): | |
| super().__init__() | |
| self.attn = MultiheadAttention( | |
| n_ctx=n_ctx, | |
| width=width, | |
| heads=heads, | |
| qkv_bias=qkv_bias, | |
| norm_layer=norm_layer, | |
| qk_norm=qk_norm, | |
| drop_path_rate=drop_path_rate | |
| ) | |
| self.ln_1 = norm_layer(width, elementwise_affine=True, eps=1e-6) | |
| self.mlp = MLP(width=width, drop_path_rate=drop_path_rate) | |
| self.ln_2 = norm_layer(width, elementwise_affine=True, eps=1e-6) | |
| def forward(self, x: torch.Tensor): | |
| x = x + self.attn(self.ln_1(x)) | |
| x = x + self.mlp(self.ln_2(x)) | |
| return x | |
| class Transformer(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| n_ctx: int, | |
| width: int, | |
| layers: int, | |
| heads: int, | |
| qkv_bias: bool = True, | |
| norm_layer=nn.LayerNorm, | |
| qk_norm: bool = False, | |
| drop_path_rate: float = 0.0 | |
| ): | |
| super().__init__() | |
| self.n_ctx = n_ctx | |
| self.width = width | |
| self.layers = layers | |
| self.resblocks = nn.ModuleList( | |
| [ | |
| ResidualAttentionBlock( | |
| n_ctx=n_ctx, | |
| width=width, | |
| heads=heads, | |
| qkv_bias=qkv_bias, | |
| norm_layer=norm_layer, | |
| qk_norm=qk_norm, | |
| drop_path_rate=drop_path_rate | |
| ) | |
| for _ in range(layers) | |
| ] | |
| ) | |
| def forward(self, x: torch.Tensor): | |
| for block in self.resblocks: | |
| x = block(x) | |
| return x | |
| class CrossAttentionDecoder(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| num_latents: int, | |
| out_channels: int, | |
| fourier_embedder: FourierEmbedder, | |
| width: int, | |
| heads: int, | |
| qkv_bias: bool = True, | |
| qk_norm: bool = False, | |
| label_type: str = "binary" | |
| ): | |
| super().__init__() | |
| self.fourier_embedder = fourier_embedder | |
| self.query_proj = nn.Linear(self.fourier_embedder.out_dim, width) | |
| self.cross_attn_decoder = ResidualCrossAttentionBlock( | |
| n_data=num_latents, | |
| width=width, | |
| heads=heads, | |
| qkv_bias=qkv_bias, | |
| qk_norm=qk_norm | |
| ) | |
| self.ln_post = nn.LayerNorm(width) | |
| self.output_proj = nn.Linear(width, out_channels) | |
| self.label_type = label_type | |
| def forward(self, queries: torch.FloatTensor, latents: torch.FloatTensor): | |
| queries = self.query_proj(self.fourier_embedder(queries).to(latents.dtype)) | |
| x = self.cross_attn_decoder(queries, latents) | |
| x = self.ln_post(x) | |
| occ = self.output_proj(x) | |
| return occ | |
| def generate_dense_grid_points(bbox_min: np.ndarray, | |
| bbox_max: np.ndarray, | |
| octree_depth: int, | |
| indexing: str = "ij", | |
| octree_resolution: int = None, | |
| ): | |
| length = bbox_max - bbox_min | |
| num_cells = np.exp2(octree_depth) | |
| if octree_resolution is not None: | |
| num_cells = octree_resolution | |
| x = np.linspace(bbox_min[0], bbox_max[0], int(num_cells) + 1, dtype=np.float32) | |
| y = np.linspace(bbox_min[1], bbox_max[1], int(num_cells) + 1, dtype=np.float32) | |
| z = np.linspace(bbox_min[2], bbox_max[2], int(num_cells) + 1, dtype=np.float32) | |
| [xs, ys, zs] = np.meshgrid(x, y, z, indexing=indexing) | |
| xyz = np.stack((xs, ys, zs), axis=-1) | |
| xyz = xyz.reshape(-1, 3) | |
| grid_size = [int(num_cells) + 1, int(num_cells) + 1, int(num_cells) + 1] | |
| return xyz, grid_size, length | |
| def center_vertices(vertices): | |
| """Translate the vertices so that bounding box is centered at zero.""" | |
| vert_min = vertices.min(dim=0)[0] | |
| vert_max = vertices.max(dim=0)[0] | |
| vert_center = 0.5 * (vert_min + vert_max) | |
| return vertices - vert_center | |
| class Latent2MeshOutput: | |
| def __init__(self, mesh_v=None, mesh_f=None): | |
| self.mesh_v = mesh_v | |
| self.mesh_f = mesh_f | |
| class ShapeVAE(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| num_latents: int, | |
| embed_dim: int, | |
| width: int, | |
| heads: int, | |
| num_decoder_layers: int, | |
| num_freqs: int = 8, | |
| include_pi: bool = True, | |
| qkv_bias: bool = True, | |
| qk_norm: bool = False, | |
| label_type: str = "binary", | |
| drop_path_rate: float = 0.0, | |
| scale_factor: float = 1.0, | |
| ): | |
| super().__init__() | |
| self.fourier_embedder = FourierEmbedder(num_freqs=num_freqs, include_pi=include_pi) | |
| self.post_kl = nn.Linear(embed_dim, width) | |
| self.transformer = Transformer( | |
| n_ctx=num_latents, | |
| width=width, | |
| layers=num_decoder_layers, | |
| heads=heads, | |
| qkv_bias=qkv_bias, | |
| qk_norm=qk_norm, | |
| drop_path_rate=drop_path_rate | |
| ) | |
| self.geo_decoder = CrossAttentionDecoder( | |
| fourier_embedder=self.fourier_embedder, | |
| out_channels=1, | |
| num_latents=num_latents, | |
| width=width, | |
| heads=heads, | |
| qkv_bias=qkv_bias, | |
| qk_norm=qk_norm, | |
| label_type=label_type, | |
| ) | |
| self.scale_factor = scale_factor | |
| self.latent_shape = (num_latents, embed_dim) | |
| def forward(self, latents): | |
| latents = self.post_kl(latents) | |
| latents = self.transformer(latents) | |
| return latents | |
| def latents2mesh( | |
| self, | |
| latents: torch.FloatTensor, | |
| bounds: Union[Tuple[float], List[float], float] = 1.1, | |
| octree_depth: int = 7, | |
| num_chunks: int = 10000, | |
| mc_level: float = -1 / 512, | |
| octree_resolution: int = None, | |
| mc_algo: str = 'dmc', | |
| ): | |
| device = latents.device | |
| # 1. generate query points | |
| if isinstance(bounds, float): | |
| bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds] | |
| bbox_min = np.array(bounds[0:3]) | |
| bbox_max = np.array(bounds[3:6]) | |
| bbox_size = bbox_max - bbox_min | |
| xyz_samples, grid_size, length = generate_dense_grid_points( | |
| bbox_min=bbox_min, | |
| bbox_max=bbox_max, | |
| octree_depth=octree_depth, | |
| octree_resolution=octree_resolution, | |
| indexing="ij" | |
| ) | |
| xyz_samples = torch.FloatTensor(xyz_samples) | |
| # 2. latents to 3d volume | |
| batch_logits = [] | |
| batch_size = latents.shape[0] | |
| for start in tqdm(range(0, xyz_samples.shape[0], num_chunks), | |
| desc=f"MC Level {mc_level} Implicit Function:"): | |
| queries = xyz_samples[start: start + num_chunks, :].to(device) | |
| queries = queries.half() | |
| batch_queries = repeat(queries, "p c -> b p c", b=batch_size) | |
| logits = self.geo_decoder(batch_queries.to(latents.dtype), latents) | |
| if mc_level == -1: | |
| mc_level = 0 | |
| logits = torch.sigmoid(logits) * 2 - 1 | |
| print(f'Training with soft labels, inference with sigmoid and marching cubes level 0.') | |
| batch_logits.append(logits) | |
| grid_logits = torch.cat(batch_logits, dim=1) | |
| grid_logits = grid_logits.view((batch_size, grid_size[0], grid_size[1], grid_size[2])).float() | |
| # 3. extract surface | |
| outputs = [] | |
| for i in range(batch_size): | |
| try: | |
| if mc_algo == 'mc': | |
| vertices, faces, normals, _ = measure.marching_cubes( | |
| grid_logits[i].cpu().numpy(), | |
| mc_level, | |
| method="lewiner" | |
| ) | |
| vertices = vertices / grid_size * bbox_size + bbox_min | |
| elif mc_algo == 'dmc': | |
| if not hasattr(self, 'dmc'): | |
| try: | |
| from diso import DiffDMC | |
| except: | |
| raise ImportError("Please install diso via `pip install diso`, or set mc_algo to 'mc'") | |
| self.dmc = DiffDMC(dtype=torch.float32).to(device) | |
| octree_resolution = 2 ** octree_depth if octree_resolution is None else octree_resolution | |
| sdf = -grid_logits[i] / octree_resolution | |
| verts, faces = self.dmc(sdf, deform=None, return_quads=False, normalize=True) | |
| verts = center_vertices(verts) | |
| vertices = verts.detach().cpu().numpy() | |
| faces = faces.detach().cpu().numpy()[:, ::-1] | |
| else: | |
| raise ValueError(f"mc_algo {mc_algo} not supported.") | |
| outputs.append( | |
| Latent2MeshOutput( | |
| mesh_v=vertices.astype(np.float32), | |
| mesh_f=np.ascontiguousarray(faces) | |
| ) | |
| ) | |
| except ValueError: | |
| outputs.append(None) | |
| except RuntimeError: | |
| outputs.append(None) | |
| return outputs | |