Spaces:
Running
on
Zero
Running
on
Zero
Upload folder using huggingface_hub
Browse files- hg_app.py +1 -1
- hy3dgen/shapegen/pipelines.py +6 -1
hg_app.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
# pip install gradio==4.44.1
|
| 2 |
-
if
|
| 3 |
import os
|
| 4 |
import spaces
|
| 5 |
import subprocess
|
|
|
|
| 1 |
# pip install gradio==4.44.1
|
| 2 |
+
if False:
|
| 3 |
import os
|
| 4 |
import spaces
|
| 5 |
import subprocess
|
hy3dgen/shapegen/pipelines.py
CHANGED
|
@@ -186,6 +186,7 @@ class Hunyuan3DDiTPipeline:
|
|
| 186 |
scheduler=scheduler,
|
| 187 |
conditioner=conditioner,
|
| 188 |
image_processor=image_processor,
|
|
|
|
| 189 |
device=device,
|
| 190 |
dtype=dtype,
|
| 191 |
)
|
|
@@ -252,6 +253,7 @@ class Hunyuan3DDiTPipeline:
|
|
| 252 |
self.scheduler = scheduler
|
| 253 |
self.conditioner = conditioner
|
| 254 |
self.image_processor = image_processor
|
|
|
|
| 255 |
|
| 256 |
self.to(device, dtype)
|
| 257 |
|
|
@@ -421,8 +423,10 @@ class Hunyuan3DDiTPipeline:
|
|
| 421 |
batch_size = image.shape[0]
|
| 422 |
|
| 423 |
t_dtype = torch.long
|
|
|
|
| 424 |
timesteps, num_inference_steps = retrieve_timesteps(
|
| 425 |
-
|
|
|
|
| 426 |
|
| 427 |
latents = self.prepare_latents(batch_size, dtype, device, generator)
|
| 428 |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|
@@ -581,3 +585,4 @@ class Hunyuan3DDiTFlowMatchingPipeline(Hunyuan3DDiTPipeline):
|
|
| 581 |
output_type,
|
| 582 |
box_v, mc_level, num_chunks, octree_resolution, mc_algo,
|
| 583 |
)
|
|
|
|
|
|
| 186 |
scheduler=scheduler,
|
| 187 |
conditioner=conditioner,
|
| 188 |
image_processor=image_processor,
|
| 189 |
+
scheduler_cfg=config['scheduler'],
|
| 190 |
device=device,
|
| 191 |
dtype=dtype,
|
| 192 |
)
|
|
|
|
| 253 |
self.scheduler = scheduler
|
| 254 |
self.conditioner = conditioner
|
| 255 |
self.image_processor = image_processor
|
| 256 |
+
self.kwargs = kwargs
|
| 257 |
|
| 258 |
self.to(device, dtype)
|
| 259 |
|
|
|
|
| 423 |
batch_size = image.shape[0]
|
| 424 |
|
| 425 |
t_dtype = torch.long
|
| 426 |
+
scheduler = instantiate_from_config(self.kwargs['scheduler_cfg'])
|
| 427 |
timesteps, num_inference_steps = retrieve_timesteps(
|
| 428 |
+
scheduler, num_inference_steps, device, timesteps, sigmas
|
| 429 |
+
)
|
| 430 |
|
| 431 |
latents = self.prepare_latents(batch_size, dtype, device, generator)
|
| 432 |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|
|
|
| 585 |
output_type,
|
| 586 |
box_v, mc_level, num_chunks, octree_resolution, mc_algo,
|
| 587 |
)
|
| 588 |
+
|