File size: 6,763 Bytes
7b75adb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
from .part_encoders import PartEncoder
from ..autoencoders import VolumeDecoderShapeVAE
from ...utils.misc import (
    instantiate_from_config,
    instantiate_non_trainable_model,
)
from .sonata_extractor import SonataFeatureExtractor
from .part_encoders import PartEncoder


def debug_sonata_feat(points, feats):
    from sklearn.decomposition import PCA
    import numpy as np
    import trimesh
    import os

    point_num = points.shape[0]
    feat_save = feats.float().detach().cpu().numpy()
    data_scaled = feat_save / np.linalg.norm(feat_save, axis=-1, keepdims=True)
    pca = PCA(n_components=3)
    data_reduced = pca.fit_transform(data_scaled)
    data_reduced = (data_reduced - data_reduced.min()) / (
        data_reduced.max() - data_reduced.min()
    )
    colors_255 = (data_reduced * 255).astype(np.uint8)
    colors_255 = np.concatenate(
        [colors_255, np.ones((point_num, 1), dtype=np.uint8) * 255], axis=-1
    )
    pc_save = trimesh.points.PointCloud(points, colors=colors_255)
    return pc_save
    # pc_save.export(os.path.join("debug", "point_pca.glb"))


class Conditioner(torch.nn.Module):

    def __init__(
        self,
        use_image=False,
        use_geo=True,
        use_obj=True,
        use_seg_feat=False,
        geo_cfg=None,
        obj_encoder_cfg=None,
        seg_feat_cfg=None,
        **kwargs
    ):
        super().__init__()
        self.use_image = use_image
        self.use_obj = use_obj
        self.use_geo = use_geo
        self.use_seg_feat = use_seg_feat
        self.geo_cfg = geo_cfg
        self.obj_encoder_cfg = obj_encoder_cfg
        self.seg_feat_cfg = seg_feat_cfg
        if use_geo and geo_cfg is not None:
            self.geo_encoder: PartEncoder = instantiate_from_config(geo_cfg)
            if hasattr(geo_cfg, "output_dim"):
                self.geo_out_proj = torch.nn.Linear(1024 + 512, geo_cfg.output_dim)

        if use_obj and obj_encoder_cfg is not None:
            self.obj_encoder: VolumeDecoderShapeVAE = instantiate_non_trainable_model(
                obj_encoder_cfg
            )
            if hasattr(obj_encoder_cfg, "output_dim"):
                self.obj_out_proj = torch.nn.Linear(
                    1024 + 512, obj_encoder_cfg.output_dim
                )
        if use_seg_feat and seg_feat_cfg is not None:
            self.seg_feat_encoder: SonataFeatureExtractor = (
                instantiate_non_trainable_model(seg_feat_cfg)
            )
            if hasattr(seg_feat_cfg, "output_dim"):
                self.seg_feat_outproj = torch.nn.Linear(512, seg_feat_cfg.output_dim)

    def forward(self, part_surface_inbbox, object_surface):
        bz = part_surface_inbbox.shape[0]
        context = {}
        # geo_cond
        if self.use_geo:
            context["geo_cond"], local_pc_infos = self.geo_encoder(
                part_surface_inbbox,
                object_surface,
                return_local_pc_info=True,
            )
        # obj cond
        if self.use_obj:
            with torch.no_grad():
                context["obj_cond"], global_pc_infos = self.obj_encoder.encode_shape(
                    object_surface, return_pc_info=True
                )

        # seg feat cond
        if self.use_seg_feat:
            # TODO: batchsize must be One
            num_parts = part_surface_inbbox.shape[0]
            with torch.autocast(device_type="cuda", dtype=torch.float32):
                # encode sonata feature
                # with torch.cuda.amp.autocast(enabled=False):
                with torch.no_grad():
                    point, normal = (
                        object_surface[:1, ..., :3].float(),
                        object_surface[:1, ..., 3:6].float(),
                    )
                    point_feat = self.seg_feat_encoder(point, normal)
            # local feat
            if self.use_obj:
                nearest_global_matches = torch.argmin(
                    torch.cdist(global_pc_infos[0], object_surface[..., :3]), dim=-1
                )
                # global feat
                global_point_feats = point_feat.expand(num_parts, -1, -1).gather(
                    1,
                    nearest_global_matches.unsqueeze(-1).expand(
                        -1, -1, point_feat.size(-1)
                    ),
                )
                context["obj_cond"] = torch.concat(
                    [context["obj_cond"], global_point_feats], dim=-1
                ).to(dtype=self.obj_out_proj.weight.dtype)
                if hasattr(self, "obj_out_proj"):
                    context["obj_cond"] = self.obj_out_proj(
                        context["obj_cond"]
                    )  # .float()
            if self.use_geo:
                nearest_local_matches = torch.argmin(
                    torch.cdist(local_pc_infos[0], object_surface[..., :3]), dim=-1
                )
                local_point_feats = point_feat.expand(num_parts, -1, -1).gather(
                    1,
                    nearest_local_matches.unsqueeze(-1).expand(
                        -1, -1, point_feat.size(-1)
                    ),
                )
                context["geo_cond"] = torch.concat(
                    [context["geo_cond"], local_point_feats],
                    dim=-1,
                ).to(dtype=self.geo_out_proj.weight.dtype)
                if hasattr(self, "geo_out_proj"):
                    context["geo_cond"] = self.geo_out_proj(
                        context["geo_cond"]
                    )  # .float()
        return context