File size: 7,074 Bytes
7b75adb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.

# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.

from typing import Union, Tuple, List

import numpy as np
import torch
from skimage import measure


class Latent2MeshOutput:
    def __init__(self, mesh_v=None, mesh_f=None):
        self.mesh_v = mesh_v
        self.mesh_f = mesh_f


def center_vertices(vertices):
    """Translate the vertices so that bounding box is centered at zero."""
    vert_min = vertices.min(dim=0)[0]
    vert_max = vertices.max(dim=0)[0]
    vert_center = 0.5 * (vert_min + vert_max)
    return vertices - vert_center


class SurfaceExtractor:
    def _compute_box_stat(self, bounds: Union[Tuple[float], List[float], float], octree_resolution: int):
        """
        Compute grid size, bounding box minimum coordinates, and bounding box size based on input 
        bounds and resolution.

        Args:
            bounds (Union[Tuple[float], List[float], float]): Bounding box coordinates or a single 
            float representing half side length.
                If float, bounds are assumed symmetric around zero in all axes.
                Expected format if list/tuple: [xmin, ymin, zmin, xmax, ymax, zmax].
            octree_resolution (int): Resolution of the octree grid.

        Returns:
            grid_size (List[int]): Grid size along each axis (x, y, z), each equal to octree_resolution + 1.
            bbox_min (np.ndarray): Minimum coordinates of the bounding box (xmin, ymin, zmin).
            bbox_size (np.ndarray): Size of the bounding box along each axis (xmax - xmin, etc.).
        """
        if isinstance(bounds, float):
            bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]

        bbox_min, bbox_max = np.array(bounds[0:3]), np.array(bounds[3:6])
        bbox_size = bbox_max - bbox_min
        grid_size = [int(octree_resolution) + 1, int(octree_resolution) + 1, int(octree_resolution) + 1]
        return grid_size, bbox_min, bbox_size

    def run(self, *args, **kwargs):
        """
        Abstract method to extract surface mesh from grid logits.

        This method should be implemented by subclasses.

        Raises:
            NotImplementedError: Always, since this is an abstract method.
        """
        return NotImplementedError

    def __call__(self, grid_logits, **kwargs):
        """
        Process a batch of grid logits to extract surface meshes.

        Args:
            grid_logits (torch.Tensor): Batch of grid logits with shape (batch_size, ...).
            **kwargs: Additional keyword arguments passed to the `run` method.

        Returns:
            List[Optional[Latent2MeshOutput]]: List of mesh outputs for each grid in the batch.
                If extraction fails for a grid, None is appended at that position.
        """
        outputs = []
        for i in range(grid_logits.shape[0]):
            try:
                vertices, faces = self.run(grid_logits[i], **kwargs)
                vertices = vertices.astype(np.float32)
                faces = np.ascontiguousarray(faces)
                outputs.append(Latent2MeshOutput(mesh_v=vertices, mesh_f=faces))

            except Exception:
                import traceback
                traceback.print_exc()
                outputs.append(None)

        return outputs


class MCSurfaceExtractor(SurfaceExtractor):
    def run(self, grid_logit, *, mc_level, bounds, octree_resolution, **kwargs):
        """
        Extract surface mesh using the Marching Cubes algorithm.

        Args:
            grid_logit (torch.Tensor): 3D grid logits tensor representing the scalar field.
            mc_level (float): The level (iso-value) at which to extract the surface.
            bounds (Union[Tuple[float], List[float], float]): Bounding box coordinates or half side length.
            octree_resolution (int): Resolution of the octree grid.
            **kwargs: Additional keyword arguments (ignored).

        Returns:
            Tuple[np.ndarray, np.ndarray]: Tuple containing:
                - vertices (np.ndarray): Extracted mesh vertices, scaled and translated to bounding 
                  box coordinates.
                - faces (np.ndarray): Extracted mesh faces (triangles).
        """
        vertices, faces, normals, _ = measure.marching_cubes(grid_logit.cpu().numpy(),
                                                             mc_level,
                                                             method="lewiner")
        grid_size, bbox_min, bbox_size = self._compute_box_stat(bounds, octree_resolution)
        vertices = vertices / grid_size * bbox_size + bbox_min
        return vertices, faces


class DMCSurfaceExtractor(SurfaceExtractor):
    def run(self, grid_logit, *, octree_resolution, **kwargs):
        """
        Extract surface mesh using Differentiable Marching Cubes (DMC) algorithm.

        Args:
            grid_logit (torch.Tensor): 3D grid logits tensor representing the scalar field.
            octree_resolution (int): Resolution of the octree grid.
            **kwargs: Additional keyword arguments (ignored).

        Returns:
            Tuple[np.ndarray, np.ndarray]: Tuple containing:
                - vertices (np.ndarray): Extracted mesh vertices, centered and converted to numpy.
                - faces (np.ndarray): Extracted mesh faces (triangles), with reversed vertex order.
        
        Raises:
            ImportError: If the 'diso' package is not installed.
        """
        device = grid_logit.device
        if not hasattr(self, 'dmc'):
            try:
                from diso import DiffDMC
                self.dmc = DiffDMC(dtype=torch.float32).to(device)
            except:
                raise ImportError("Please install diso via `pip install diso`, or set mc_algo to 'mc'")
        sdf = -grid_logit / octree_resolution
        sdf = sdf.to(torch.float32).contiguous()
        verts, faces = self.dmc(sdf, deform=None, return_quads=False, normalize=True)
        verts = center_vertices(verts)
        vertices = verts.detach().cpu().numpy()
        faces = faces.detach().cpu().numpy()[:, ::-1]
        return vertices, faces


SurfaceExtractors = {
    'mc': MCSurfaceExtractor,
    'dmc': DMCSurfaceExtractor,
}