File size: 4,810 Bytes
7b75adb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# This file includes code derived from the SiT project (https://github.com/willisma/SiT),
# which is licensed under the MIT License.
#
# MIT License
#
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

import numpy as np
import torch as th
import torch.nn as nn
from torchdiffeq import odeint
from functools import partial
from tqdm import tqdm

class sde:
    """SDE solver class"""
    def __init__(
        self, 
        drift,
        diffusion,
        *,
        t0,
        t1,
        num_steps,
        sampler_type,
    ):
        assert t0 < t1, "SDE sampler has to be in forward time"

        self.num_timesteps = num_steps
        self.t = th.linspace(t0, t1, num_steps)
        self.dt = self.t[1] - self.t[0]
        self.drift = drift
        self.diffusion = diffusion
        self.sampler_type = sampler_type

    def __Euler_Maruyama_step(self, x, mean_x, t, model, **model_kwargs):
        w_cur = th.randn(x.size()).to(x)
        t = th.ones(x.size(0)).to(x) * t
        dw = w_cur * th.sqrt(self.dt)
        drift = self.drift(x, t, model, **model_kwargs)
        diffusion = self.diffusion(x, t)
        mean_x = x + drift * self.dt
        x = mean_x + th.sqrt(2 * diffusion) * dw
        return x, mean_x
    
    def __Heun_step(self, x, _, t, model, **model_kwargs):
        w_cur = th.randn(x.size()).to(x)
        dw = w_cur * th.sqrt(self.dt)
        t_cur = th.ones(x.size(0)).to(x) * t
        diffusion = self.diffusion(x, t_cur)
        xhat = x + th.sqrt(2 * diffusion) * dw
        K1 = self.drift(xhat, t_cur, model, **model_kwargs)
        xp = xhat + self.dt * K1
        K2 = self.drift(xp, t_cur + self.dt, model, **model_kwargs)
        return xhat + 0.5 * self.dt * (K1 + K2), xhat # at last time point we do not perform the heun step

    def __forward_fn(self):
        """TODO: generalize here by adding all private functions ending with steps to it"""
        sampler_dict = {
            "Euler": self.__Euler_Maruyama_step,
            "Heun": self.__Heun_step,
        }

        try:
            sampler = sampler_dict[self.sampler_type]
        except:
            raise NotImplementedError("Smapler type not implemented.")
    
        return sampler

    def sample(self, init, model, **model_kwargs):
        """forward loop of sde"""
        x = init
        mean_x = init 
        samples = []
        sampler = self.__forward_fn()
        for ti in self.t[:-1]:
            with th.no_grad():
                x, mean_x = sampler(x, mean_x, ti, model, **model_kwargs)
                samples.append(x)

        return samples

class ode:
    """ODE solver class"""
    def __init__(
        self,
        drift,
        *,
        t0,
        t1,
        sampler_type,
        num_steps,
        atol,
        rtol,
    ):
        assert t0 < t1, "ODE sampler has to be in forward time"

        self.drift = drift
        self.t = th.linspace(t0, t1, num_steps)
        self.atol = atol
        self.rtol = rtol
        self.sampler_type = sampler_type

    def sample(self, x, model, **model_kwargs):
        
        device = x[0].device if isinstance(x, tuple) else x.device
        def _fn(t, x):
            t = th.ones(x[0].size(0)).to(device) * t if isinstance(x, tuple) else th.ones(x.size(0)).to(device) * t
            model_output = self.drift(x, t, model, **model_kwargs)
            return model_output

        t = self.t.to(device)
        atol = [self.atol] * len(x) if isinstance(x, tuple) else [self.atol]
        rtol = [self.rtol] * len(x) if isinstance(x, tuple) else [self.rtol]
        samples = odeint(
            _fn,
            x,
            t,
            method=self.sampler_type,
            atol=atol,
            rtol=rtol
        )
        return samples