File size: 7,800 Bytes
7b75adb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.

# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.

import torch
import torch.nn as nn
import math

import torch.nn.functional as F
from diffusers.models.attention import FeedForward


class AddAuxiliaryLoss(torch.autograd.Function):
    """
    The trick function of adding auxiliary (aux) loss,
    which includes the gradient of the aux loss during backpropagation.
    """

    @staticmethod
    def forward(ctx, x, loss):
        assert loss.numel() == 1
        ctx.dtype = loss.dtype
        ctx.required_aux_loss = loss.requires_grad
        return x

    @staticmethod
    def backward(ctx, grad_output):
        grad_loss = None
        if ctx.required_aux_loss:
            grad_loss = torch.ones(1, dtype=ctx.dtype, device=grad_output.device)
        return grad_output, grad_loss


class MoEGate(nn.Module):
    def __init__(
        self, embed_dim, num_experts=16, num_experts_per_tok=2, aux_loss_alpha=0.01
    ):
        super().__init__()
        self.top_k = num_experts_per_tok
        self.n_routed_experts = num_experts

        self.scoring_func = "softmax"
        self.alpha = aux_loss_alpha
        self.seq_aux = False

        # topk selection algorithm
        self.norm_topk_prob = False
        self.gating_dim = embed_dim
        self.weight = nn.Parameter(
            torch.empty((self.n_routed_experts, self.gating_dim))
        )
        self.reset_parameters()

    def reset_parameters(self) -> None:
        import torch.nn.init as init

        init.kaiming_uniform_(self.weight, a=math.sqrt(5))

    def forward(self, hidden_states):
        bsz, seq_len, h = hidden_states.shape
        # print(bsz, seq_len, h)
        ### compute gating score
        hidden_states = hidden_states.view(-1, h)
        logits = F.linear(hidden_states, self.weight, None)
        if self.scoring_func == "softmax":
            scores = logits.softmax(dim=-1)
        else:
            raise NotImplementedError(
                f"insupportable scoring function for MoE gating: {self.scoring_func}"
            )

        ### select top-k experts
        topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False)

        ### norm gate to sum 1
        if self.top_k > 1 and self.norm_topk_prob:
            denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
            topk_weight = topk_weight / denominator

        ### expert-level computation auxiliary loss
        if self.training and self.alpha > 0.0:
            scores_for_aux = scores
            aux_topk = self.top_k
            # always compute aux loss based on the naive greedy topk method
            topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
            if self.seq_aux:
                scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
                ce = torch.zeros(
                    bsz, self.n_routed_experts, device=hidden_states.device
                )
                ce.scatter_add_(
                    1,
                    topk_idx_for_aux_loss,
                    torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device),
                ).div_(seq_len * aux_topk / self.n_routed_experts)
                aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(dim=1).mean()
                aux_loss = aux_loss * self.alpha
            else:
                mask_ce = F.one_hot(
                    topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts
                )
                ce = mask_ce.float().mean(0)
                Pi = scores_for_aux.mean(0)
                fi = ce * self.n_routed_experts
                aux_loss = (Pi * fi).sum() * self.alpha
        else:
            aux_loss = None
        return topk_idx, topk_weight, aux_loss


class MoEBlock(nn.Module):
    def __init__(
        self,
        dim,
        num_experts=8,
        moe_top_k=2,
        activation_fn="gelu",
        dropout=0.0,
        final_dropout=False,
        ff_inner_dim=None,
        ff_bias=True,
    ):
        super().__init__()
        self.moe_top_k = moe_top_k
        self.experts = nn.ModuleList([
            FeedForward(
                dim,
                dropout=dropout,
                activation_fn=activation_fn,
                final_dropout=final_dropout,
                inner_dim=ff_inner_dim,
                bias=ff_bias,
            )
            for i in range(num_experts)
        ])
        self.gate = MoEGate(
            embed_dim=dim, num_experts=num_experts, num_experts_per_tok=moe_top_k
        )

        self.shared_experts = FeedForward(
            dim,
            dropout=dropout,
            activation_fn=activation_fn,
            final_dropout=final_dropout,
            inner_dim=ff_inner_dim,
            bias=ff_bias,
        )

    def initialize_weight(self):
        pass

    def forward(self, hidden_states):
        identity = hidden_states
        orig_shape = hidden_states.shape
        topk_idx, topk_weight, aux_loss = self.gate(hidden_states)

        hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
        flat_topk_idx = topk_idx.view(-1)
        if self.training:
            hidden_states = hidden_states.repeat_interleave(self.moe_top_k, dim=0)
            y = torch.empty_like(hidden_states, dtype=hidden_states.dtype)
            for i, expert in enumerate(self.experts):
                tmp = expert(hidden_states[flat_topk_idx == i])
                y[flat_topk_idx == i] = tmp.to(hidden_states.dtype)
            y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
            y = y.view(*orig_shape)
            y = AddAuxiliaryLoss.apply(y, aux_loss)
        else:
            y = self.moe_infer(
                hidden_states, flat_topk_idx, topk_weight.view(-1, 1)
            ).view(*orig_shape)
        y = y + self.shared_experts(identity)
        return y

    @torch.no_grad()
    def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
        expert_cache = torch.zeros_like(x)
        idxs = flat_expert_indices.argsort()
        tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0)
        token_idxs = idxs // self.moe_top_k
        for i, end_idx in enumerate(tokens_per_expert):
            start_idx = 0 if i == 0 else tokens_per_expert[i - 1]
            if start_idx == end_idx:
                continue
            expert = self.experts[i]
            exp_token_idx = token_idxs[start_idx:end_idx]
            expert_tokens = x[exp_token_idx]
            expert_out = expert(expert_tokens)
            expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])

            # for fp16 and other dtype
            expert_cache = expert_cache.to(expert_out.dtype)
            expert_cache.scatter_reduce_(
                0,
                exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]),
                expert_out,
                reduce="sum",
            )
        return expert_cache