Spaces:
Running
on
Zero
Running
on
Zero
File size: 27,939 Bytes
7b75adb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 |
import torch
from .utils.misc import logger, synchronize_timer
import inspect
from typing import List, Optional
import trimesh
import numpy as np
from tqdm import tqdm
import copy
from typing import List, Optional, Union
import os
from .utils.mesh_utils import (
SampleMesh,
load_surface_points,
sample_bbox_points_from_trimesh,
explode_mesh,
fix_mesh,
)
from .utils.misc import (
init_from_ckpt,
instantiate_from_config,
get_config_from_file,
smart_load_model,
)
from diffusers.utils.torch_utils import randn_tensor
from pathlib import Path
@synchronize_timer("Export to trimesh")
def export_to_trimesh(mesh_output):
if isinstance(mesh_output, list):
outputs = []
for mesh in mesh_output:
if mesh is None:
outputs.append(None)
else:
mesh.mesh_f = mesh.mesh_f[:, ::-1]
mesh_output = trimesh.Trimesh(mesh.mesh_v, mesh.mesh_f)
mesh_output = fix_mesh(mesh_output)
outputs.append(mesh_output)
return outputs
else:
mesh_output.mesh_f = mesh_output.mesh_f[:, ::-1]
mesh_output = trimesh.Trimesh(mesh_output.mesh_v, mesh_output.mesh_f)
mesh_output = fix_mesh(mesh_output)
return mesh_output
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[Union[List[float], np.ndarray]] = None,
**kwargs,
):
"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
`num_inference_steps` and `sigmas` must be `None`.
sigmas (`List[float]`, *optional*):
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
`num_inference_steps` and `timesteps` must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None and sigmas is not None:
raise ValueError(
"Only one of `timesteps` or `sigmas` can be passed. Please choose one to"
" set custom values"
)
if timesteps is not None:
accepts_timesteps = "timesteps" in set(
inspect.signature(scheduler.set_timesteps).parameters.keys()
)
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps`"
" does not support custom timestep schedules. Please check whether you"
" are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
accept_sigmas = "sigmas" in set(
inspect.signature(scheduler.set_timesteps).parameters.keys()
)
if not accept_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps`"
" does not support custom sigmas schedules. Please check whether you"
" are using the correct scheduler."
)
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
class TokenAllocMixin:
def allocate_tokens(self, bboxes, num_latents=512):
return np.array([num_latents] * bboxes.shape[0])
class PartFormerPipeline(TokenAllocMixin):
def __init__(
self,
vae,
model,
scheduler,
conditioner,
bbox_predictor=None,
verbose=False,
**kwargs,
):
self.vae = vae
self.model = model
self.scheduler = scheduler
self.conditioner = conditioner
self.kwargs = kwargs
self.bbox_predictor = bbox_predictor
self.verbose = verbose
self.kwargs = kwargs
@classmethod
@synchronize_timer("Hunyuan3D PartGen Pipeline Model Loading")
def from_single_file(
cls,
ckpt_path=None,
config=None,
device="cuda",
dtype=torch.float32,
use_safetensors=None,
ignore_keys=(),
**kwargs,
):
# prepare config
if config is None:
config = get_config_from_file(
str(
Path(__file__).parent.parent
/ "config"
/ "partformer_full_pipeline_512_with_sonata.yaml"
)
)
# TODO:
if ckpt_path is None:
ckpt_path = str(
Path(__file__).parent
/ "ckpts"
/ "partformer_full_pipeline_512_with_sonata.ckpt"
)
# load ckpt
if use_safetensors:
ckpt_path = ckpt_path.replace(".ckpt", ".safetensors")
if not os.path.exists(ckpt_path):
raise FileNotFoundError(f"Model file {ckpt_path} not found")
logger.info(f"Loading model from {ckpt_path}")
if use_safetensors:
# parse safetensors
import safetensors.torch
safetensors_ckpt = safetensors.torch.load_file(ckpt_path, device="cpu")
ckpt = {}
for key, value in safetensors_ckpt.items():
model_name = key.split(".")[0]
new_key = key[len(model_name) + 1 :]
if model_name not in ckpt:
ckpt[model_name] = {}
ckpt[model_name][new_key] = value
else:
# ckpt = torch.load(ckpt_path, map_location="cpu", weights_only=True)
ckpt = torch.load(ckpt_path, map_location="cpu")
# load model
model = instantiate_from_config(config["model"])
# model.load_state_dict(ckpt["model"])
init_from_ckpt(model, ckpt, prefix="model", ignore_keys=ignore_keys)
vae = instantiate_from_config(config["shapevae"])
# vae.load_state_dict(ckpt["shapevae"], strict=False)
init_from_ckpt(vae, ckpt, prefix="shapevae", ignore_keys=ignore_keys)
if config.get("conditioner", None) is not None:
conditioner = instantiate_from_config(config["conditioner"])
init_from_ckpt(
conditioner, ckpt, prefix="conditioner", ignore_keys=ignore_keys
)
else:
conditioner = vae
scheduler = instantiate_from_config(config["scheduler"])
bbox_predictor = instantiate_from_config(config.get("bbox_predictor", None))
model_kwargs = dict(
vae=vae,
model=model,
scheduler=scheduler,
conditioner=conditioner,
bbox_predictor=bbox_predictor, # TODO: add bbox predictor
device=device,
dtype=dtype,
)
model_kwargs.update(kwargs)
return cls(**model_kwargs)
@classmethod
def from_pretrained(
cls,
config=None,
dtype=torch.float32,
ignore_keys=(),
device="cuda",
**kwargs,
):
if config is None:
config = get_config_from_file(
str(
Path(__file__).parent.parent
/ "config"
/ "partformer_full_pipeline_512_with_sonata.yaml"
)
)
ckpt_path = smart_load_model(
model_path="tencent/Hunyuan3D-Part",
)
ckpt = torch.load(os.path.join(ckpt_path, "xpart.pt"), map_location="cpu")
# load model
model = instantiate_from_config(config["model"])
# model.load_state_dict(ckpt["model"])
init_from_ckpt(model, ckpt, prefix="model", ignore_keys=ignore_keys)
vae = instantiate_from_config(config["shapevae"])
# vae.load_state_dict(ckpt["shapevae"], strict=False)
init_from_ckpt(vae, ckpt, prefix="shapevae", ignore_keys=ignore_keys)
if config.get("conditioner", None) is not None:
conditioner = instantiate_from_config(config["conditioner"])
init_from_ckpt(
conditioner, ckpt, prefix="conditioner", ignore_keys=ignore_keys
)
else:
conditioner = vae
scheduler = instantiate_from_config(config["scheduler"])
config["bbox_predictor"]["params"]["ckpt_path"] = os.path.join(
ckpt_path, "p3sam.ckpt"
)
bbox_predictor = instantiate_from_config(config.get("bbox_predictor", None))
model_kwargs = dict(
vae=vae,
model=model,
scheduler=scheduler,
conditioner=conditioner,
bbox_predictor=bbox_predictor, # TODO: add bbox predictor
device=device,
dtype=dtype,
)
model_kwargs.update(kwargs)
return cls(**model_kwargs)
def compile(self):
self.vae = torch.compile(self.vae)
self.model = torch.compile(self.model)
self.conditioner = torch.compile(self.conditioner)
def to(self, device=None, dtype=None):
if dtype is not None:
self.dtype = dtype
self.vae.to(dtype=dtype)
self.model.to(dtype=dtype)
self.conditioner.to(dtype=dtype)
if device is not None:
self.device = torch.device(device)
self.vae.to(device)
self.model.to(device)
self.conditioner.to(device)
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(
inspect.signature(self.scheduler.step).parameters.keys()
)
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(
inspect.signature(self.scheduler.step).parameters.keys()
)
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def predict_bbox(
self, mesh: trimesh.Trimesh, scale_box=1.0, drop_normal=True, seed=42
):
"""
Predict the bounding box of the object surface.
Args:
obj_surface (`torch.Tensor`): [B, N, 3]
Returns:
`torch.Tensor`: [B, K, 2, 3] where K is the number of bounding boxes
"""
if self.bbox_predictor is None:
raise ValueError("bbox_predictor is not set.")
aabb, face_ids, mesh = self.bbox_predictor.predict_aabb(
mesh, post_process=True, seed=seed
)
# aabb, face_ids, mesh = self.bbox_predictor.predict_aabb(mesh, post_process=False)
aabb = torch.from_numpy(aabb)
return aabb
def prepare_latents(
self, batch_size, latent_shape, dtype, device, generator, latents=None
):
# prepare latents for different parts
shape = (batch_size, *latent_shape)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but"
f" requested an effective batch size of {batch_size}. Make sure the"
" batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(
shape, generator=generator, device=device, dtype=dtype
)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * getattr(self.scheduler, "init_noise_sigma", 1.0)
return latents
@synchronize_timer("Encode cond")
def encode_cond(
self,
part_surface_inbbox,
object_surface,
do_classifier_free_guidance,
):
bsz = object_surface.shape[0]
cond = self.conditioner(part_surface_inbbox, object_surface)
if do_classifier_free_guidance:
# TODO: do_classifier_free_guidance, un_cond
un_cond = {k: torch.zeros_like(v) for k, v in cond.items()}
def cat_recursive(a, b):
if isinstance(a, torch.Tensor):
return torch.cat([a, b], dim=0).to(self.dtype)
out = {}
for k in a.keys():
out[k] = cat_recursive(a[k], b[k])
return out
cond = cat_recursive(cond, un_cond)
return cond
def normalize_mesh(self, mesh):
vertices = mesh.vertices
min_xyz = np.min(vertices, axis=0)
max_xyz = np.max(vertices, axis=0)
center = (min_xyz + max_xyz) / 2.0
# scale = np.max(np.linalg.norm(vertices - center, axis=1))
scale = np.max(max_xyz - min_xyz) / 2 / 0.8
vertices = (vertices - center) / scale
mesh.vertices = vertices
return mesh, center, scale
def check_inputs(
self,
obj_surface=None,
obj_surface_raw=None,
mesh_path=None,
mesh=None,
aabb=None,
part_surface_inbbox=None,
seed=42,
):
"""
Check the inputs of the pipeline.
Args:
obj_surface (`torch.Tensor`): [B, N, 3+3+1]
mesh_path (`str`): path to the mesh file
mesh (`trimesh.Trimesh`): mesh object
aabb (`torch.Tensor`): [B, K, 2, 3]
part_surface_inbbox (`torch.Tensor`): [B, K,N, 3+3+1]
"""
if obj_surface is None:
if mesh_path is None and (mesh is None and obj_surface_raw is None):
raise ValueError(
"obj_surface or mesh_path/mesh/obj_surface_raw must be provided."
)
elif aabb is None or part_surface_inbbox is None:
raise ValueError(
"aabb and part_surface_inbbox must be provided if obj_surface is"
" provided."
)
else:
assert aabb.shape[0] == part_surface_inbbox.shape[0], "Batch size mismatch."
center = np.zeros(3)
scale = 1.0
# 1. Load object surface and sample
if obj_surface is None:
if obj_surface_raw is None:
if mesh is not None:
obj_surface_raw = SampleMesh(
mesh.vertices, mesh.faces, -1, seed=seed
)
elif mesh_path is not None:
mesh = trimesh.load(mesh_path, force="mesh")
mesh, center, scale = self.normalize_mesh(mesh)
print(f"Normalize mesh: {center}, {scale}")
obj_surface_raw = SampleMesh(
mesh.vertices, mesh.faces, -1, seed=seed
)
else:
raise ValueError("obj_surface or mesh_path/mesh must be provided.")
rng = np.random.default_rng(seed=seed)
obj_surface, _ = load_surface_points(
rng,
obj_surface_raw["random_surface"],
obj_surface_raw["sharp_surface"],
pc_size=81920,
pc_sharpedge_size=0,
return_sharpedge_label=True,
return_normal=True,
)
obj_surface = obj_surface.unsqueeze(0)
# 2. load aabb
if aabb is None:
aabb = self.predict_bbox(mesh, seed=seed)
print(f"Get bbox from bbox_predictor: {aabb.shape}")
else:
if isinstance(aabb, np.ndarray):
aabb = torch.from_numpy(aabb)
# normalize aabb by mesh scale and center
aabb = aabb.float()
aabb = (aabb - torch.from_numpy(center).float()) / scale
# 3. load part surface in bbox
if part_surface_inbbox is None:
part_surface_inbbox, valid_parts_mask = sample_bbox_points_from_trimesh(
mesh, aabb, num_points=81920, seed=seed
)
aabb = aabb[valid_parts_mask]
aabb = aabb.unsqueeze(0)
part_surface_inbbox = part_surface_inbbox.unsqueeze(0)
return (
obj_surface,
aabb,
part_surface_inbbox,
mesh,
center,
scale,
)
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
"""
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
Args:
timesteps (`torch.Tensor`):
generate embedding vectors at these timesteps
embedding_dim (`int`, *optional*, defaults to 512):
dimension of the embeddings to generate
dtype:
data type of the generated embeddings
Returns:
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
"""
assert len(w.shape) == 1
w = w * 1000.0
half_dim = embedding_dim // 2
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
emb = w.to(dtype)[:, None] * emb[None, :]
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
if embedding_dim % 2 == 1: # zero pad
emb = torch.nn.functional.pad(emb, (0, 1))
assert emb.shape == (w.shape[0], embedding_dim)
return emb
def _export(
self,
latents,
output_type="trimesh",
box_v=1.01,
mc_level=0.0,
num_chunks=20000,
octree_resolution=256,
mc_algo="mc",
enable_pbar=True,
**kwargs,
):
if not output_type == "latent":
latents = 1.0 / self.vae.scale_factor * latents
latents = self.vae(latents)
outputs = self.vae.latent2mesh_2(
# outputs = self.vae.latents2mesh(
latents,
bounds=box_v,
mc_level=mc_level,
octree_depth=8,
num_chunks=num_chunks,
octree_resolution=octree_resolution,
mc_mode=mc_algo,
# enable_pbar=enable_pbar,
**kwargs,
)
else:
outputs = latents
if output_type == "trimesh":
outputs = export_to_trimesh(outputs)
return outputs
@torch.no_grad()
@torch.autocast("cuda", dtype=torch.bfloat16)
def __call__(
self,
obj_surface=None,
obj_surface_raw=None,
mesh_path=None,
mesh=None,
aabb=None,
part_surface_inbbox=None,
num_inference_steps: int = 50,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
eta: float = 0.0,
# guidance_scale: float = 7.5,
guidance_scale: float = -1.0,
dual_guidance_scale: float = 10.5,
dual_guidance: bool = True,
generator=None,
seed=42,
# marching cubes
box_v=1.01,
octree_resolution=512,
mc_level=-1 / 512,
num_chunks=400000,
mc_algo="mc",
output_type: Optional[str] = "trimesh",
enable_pbar=True,
**kwargs,
):
"""
Args:
obj_surface (`torch.Tensor`): [B, N, 3+3+1]
aabb (`torch.Tensor`): [B, K, 2, 3]
part_surface_inbbox (`torch.Tensor`): [B, K,N, 3+3+1]
Returns:
`trimesh.Scene` : single object composed of multiple parts
"""
callback = kwargs.pop("callback", None)
callback_steps = kwargs.pop("callback_steps", None)
do_classifier_free_guidance = guidance_scale >= 0 and not (
hasattr(self.model, "guidance_embed") and self.model.guidance_embed is True
)
# 1. Check inputs and predict bbox if not provided
device = self.device
dtype = self.dtype
obj_surface, aabb, part_surface_inbbox, mesh, center, scale = self.check_inputs(
obj_surface,
obj_surface_raw,
mesh_path,
mesh,
aabb,
part_surface_inbbox,
seed=seed,
)
if self.verbose:
# return gt mesh with bbox
mesh_bbox = trimesh.Scene()
if mesh is not None:
mesh_bbox.add_geometry(mesh)
else:
mesh = trimesh.points.PointCloud(
obj_surface[0, :, :3].float().cpu().numpy()
)
mesh_bbox.add_geometry(mesh)
for bbox in aabb[0]:
box = trimesh.path.creation.box_outline()
box.vertices *= (bbox[1] - bbox[0]).float().cpu().numpy()
box.vertices += (bbox[0] + bbox[1]).float().cpu().numpy() / 2
mesh_bbox.add_geometry(box)
# Convert to device and dtype
obj_surface = obj_surface.to(device=device, dtype=dtype)
aabb = aabb.to(device=device, dtype=dtype)
part_surface_inbbox = part_surface_inbbox.to(device=device, dtype=dtype)
batch_size, num_parts, N, dim = part_surface_inbbox.shape
# TODO: support batch size > 1
assert batch_size == 1, "Batch size > 1 is not supported yet."
# 2. Prepare latent variables
# TODO:allocate tokens for each parts
num_tokens = torch.tensor(
[self.allocate_tokens(x, self.vae.latent_shape[0]) for x in aabb],
device=device,
)
latent_shape = self.vae.latent_shape
latents = self.prepare_latents(
num_parts, latent_shape, dtype, device, generator
)
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 3. condition
cond = self.encode_cond(
part_surface_inbbox.reshape(batch_size * num_parts, N, dim),
obj_surface.expand(batch_size * num_parts, -1, -1),
do_classifier_free_guidance,
)
# 4. guidance_cond for controling sampling
guidance_cond = None
if getattr(self.model, "guidance_cond_proj_dim", None) is not None:
logger.info("Using lcm guidance scale")
guidance_scale_tensor = torch.tensor(guidance_scale - 1).repeat(batch_size)
guidance_cond = self.get_guidance_scale_embedding(
guidance_scale_tensor, embedding_dim=self.model.guidance_cond_proj_dim
).to(device=device, dtype=latents.dtype)
# 5. Prepare timesteps
# NOTE: this is slightly different from common usage, we start from 0.
sigmas = np.linspace(0, 1, num_inference_steps) if sigmas is None else sigmas
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
sigmas=sigmas,
)
torch.cuda.empty_cache()
# 6. Denoising loop
with synchronize_timer("Diffusion Sampling"):
for i, t in enumerate(
tqdm(timesteps, disable=not enable_pbar, desc="Diffusion Sampling:")
):
# expand the latents if we are doing classifier free guidance
if do_classifier_free_guidance:
latent_model_input = torch.cat([latents] * 2)
aabb = torch.repeat_interleave(aabb, 2, dim=0)
else:
latent_model_input = latents
# NOTE: we assume model get timesteps ranged from 0 to 1
timestep = t.expand(latent_model_input.shape[0]).to(latents.dtype)
timestep = timestep / self.scheduler.config.num_train_timesteps
noise_pred = self.model(
latent_model_input,
timestep,
cond,
aabb=aabb,
num_tokens=num_tokens,
guidance_cond=guidance_cond,
)
if do_classifier_free_guidance:
noise_pred_cond, noise_pred_uncond = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_cond - noise_pred_uncond
)
# compute the previous noisy sample x_t -> x_t-1
outputs = self.scheduler.step(noise_pred, t, latents)
latents = outputs.prev_sample
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, outputs)
# latents2mesh
# part_latents = torch.split(latents, num_tokens[0].tolist(), dim=1)
out = trimesh.Scene()
for i, part_latent in enumerate(latents):
try:
part_mesh = self._export(
latents=part_latent.unsqueeze(0),
output_type=output_type,
box_v=box_v,
mc_level=mc_level,
num_chunks=num_chunks,
octree_resolution=octree_resolution,
mc_algo=mc_algo,
enable_pbar=enable_pbar,
)[0]
out.add_geometry(part_mesh)
random_color = np.random.randint(0, 255, size=3)
part_mesh.visual.face_colors = random_color
except Exception as e:
logger.error(f"Failed to export part {i} with error {e}")
print(f"Denormalize mesh: {center}, {scale}")
for key in out.geometry.keys():
_v = out.geometry[key].vertices
_v = _v * scale + center
out.geometry[key].vertices = _v
if self.verbose:
explode_object = explode_mesh(copy.deepcopy(out), explosion_scale=0.2)
# add bbox into out
out_bbox = trimesh.Scene()
out_bbox.add_geometry(out)
for bbox in aabb[0]:
box = trimesh.path.creation.box_outline()
box.vertices *= (bbox[1] - bbox[0]).float().cpu().numpy()
box.vertices += (bbox[0] + bbox[1]).float().cpu().numpy() / 2
box.vertices = box.vertices * scale + center
out_bbox.add_geometry(box)
return out, (out_bbox, mesh_bbox, explode_object)
else:
# return only the generated mesh
return out, None
|