File size: 27,939 Bytes
7b75adb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
import torch
from .utils.misc import logger, synchronize_timer
import inspect
from typing import List, Optional
import trimesh
import numpy as np
from tqdm import tqdm
import copy
from typing import List, Optional, Union
import os
from .utils.mesh_utils import (
    SampleMesh,
    load_surface_points,
    sample_bbox_points_from_trimesh,
    explode_mesh,
    fix_mesh,
)
from .utils.misc import (
    init_from_ckpt,
    instantiate_from_config,
    get_config_from_file,
    smart_load_model,
)

from diffusers.utils.torch_utils import randn_tensor
from pathlib import Path


@synchronize_timer("Export to trimesh")
def export_to_trimesh(mesh_output):
    if isinstance(mesh_output, list):
        outputs = []
        for mesh in mesh_output:
            if mesh is None:
                outputs.append(None)
            else:
                mesh.mesh_f = mesh.mesh_f[:, ::-1]
                mesh_output = trimesh.Trimesh(mesh.mesh_v, mesh.mesh_f)
                mesh_output = fix_mesh(mesh_output)
                outputs.append(mesh_output)
        return outputs
    else:
        mesh_output.mesh_f = mesh_output.mesh_f[:, ::-1]
        mesh_output = trimesh.Trimesh(mesh_output.mesh_v, mesh_output.mesh_f)
        mesh_output = fix_mesh(mesh_output)
        return mesh_output


def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    sigmas: Optional[Union[List[float], np.ndarray]] = None,
    **kwargs,
):
    """
    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.

    Args:
        scheduler (`SchedulerMixin`):
            The scheduler to get timesteps from.
        num_inference_steps (`int`):
            The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
            must be `None`.
        device (`str` or `torch.device`, *optional*):
            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        timesteps (`List[int]`, *optional*):
            Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
            `num_inference_steps` and `sigmas` must be `None`.
        sigmas (`List[float]`, *optional*):
            Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
            `num_inference_steps` and `timesteps` must be `None`.

    Returns:
        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
        second element is the number of inference steps.
    """
    if timesteps is not None and sigmas is not None:
        raise ValueError(
            "Only one of `timesteps` or `sigmas` can be passed. Please choose one to"
            " set custom values"
        )
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(
            inspect.signature(scheduler.set_timesteps).parameters.keys()
        )
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps`"
                " does not support custom timestep schedules. Please check whether you"
                " are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        accept_sigmas = "sigmas" in set(
            inspect.signature(scheduler.set_timesteps).parameters.keys()
        )
        if not accept_sigmas:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps`"
                " does not support custom sigmas schedules. Please check whether you"
                " are using the correct scheduler."
            )
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps


class TokenAllocMixin:

    def allocate_tokens(self, bboxes, num_latents=512):
        return np.array([num_latents] * bboxes.shape[0])


class PartFormerPipeline(TokenAllocMixin):

    def __init__(
        self,
        vae,
        model,
        scheduler,
        conditioner,
        bbox_predictor=None,
        verbose=False,
        **kwargs,
    ):
        self.vae = vae
        self.model = model
        self.scheduler = scheduler
        self.conditioner = conditioner
        self.kwargs = kwargs
        self.bbox_predictor = bbox_predictor
        self.verbose = verbose
        self.kwargs = kwargs

    @classmethod
    @synchronize_timer("Hunyuan3D PartGen Pipeline Model Loading")
    def from_single_file(
        cls,
        ckpt_path=None,
        config=None,
        device="cuda",
        dtype=torch.float32,
        use_safetensors=None,
        ignore_keys=(),
        **kwargs,
    ):
        # prepare config
        if config is None:
            config = get_config_from_file(
                str(
                    Path(__file__).parent.parent
                    / "config"
                    / "partformer_full_pipeline_512_with_sonata.yaml"
                )
            )
        # TODO:
        if ckpt_path is None:
            ckpt_path = str(
                Path(__file__).parent
                / "ckpts"
                / "partformer_full_pipeline_512_with_sonata.ckpt"
            )
        # load ckpt
        if use_safetensors:
            ckpt_path = ckpt_path.replace(".ckpt", ".safetensors")
        if not os.path.exists(ckpt_path):
            raise FileNotFoundError(f"Model file {ckpt_path} not found")
        logger.info(f"Loading model from {ckpt_path}")

        if use_safetensors:
            # parse safetensors
            import safetensors.torch

            safetensors_ckpt = safetensors.torch.load_file(ckpt_path, device="cpu")
            ckpt = {}
            for key, value in safetensors_ckpt.items():
                model_name = key.split(".")[0]
                new_key = key[len(model_name) + 1 :]
                if model_name not in ckpt:
                    ckpt[model_name] = {}
                ckpt[model_name][new_key] = value
        else:
            # ckpt = torch.load(ckpt_path, map_location="cpu", weights_only=True)
            ckpt = torch.load(ckpt_path, map_location="cpu")
        # load model
        model = instantiate_from_config(config["model"])
        # model.load_state_dict(ckpt["model"])
        init_from_ckpt(model, ckpt, prefix="model", ignore_keys=ignore_keys)
        vae = instantiate_from_config(config["shapevae"])
        # vae.load_state_dict(ckpt["shapevae"], strict=False)
        init_from_ckpt(vae, ckpt, prefix="shapevae", ignore_keys=ignore_keys)
        if config.get("conditioner", None) is not None:
            conditioner = instantiate_from_config(config["conditioner"])
            init_from_ckpt(
                conditioner, ckpt, prefix="conditioner", ignore_keys=ignore_keys
            )
        else:
            conditioner = vae
        scheduler = instantiate_from_config(config["scheduler"])
        bbox_predictor = instantiate_from_config(config.get("bbox_predictor", None))
        model_kwargs = dict(
            vae=vae,
            model=model,
            scheduler=scheduler,
            conditioner=conditioner,
            bbox_predictor=bbox_predictor,  # TODO: add bbox predictor
            device=device,
            dtype=dtype,
        )
        model_kwargs.update(kwargs)
        return cls(**model_kwargs)

    @classmethod
    def from_pretrained(
        cls,
        config=None,
        dtype=torch.float32,
        ignore_keys=(),
        device="cuda",
        **kwargs,
    ):
        if config is None:
            config = get_config_from_file(
                str(
                    Path(__file__).parent.parent
                    / "config"
                    / "partformer_full_pipeline_512_with_sonata.yaml"
                )
            )
        ckpt_path = smart_load_model(
            model_path="tencent/Hunyuan3D-Part",
        )
        ckpt = torch.load(os.path.join(ckpt_path, "xpart.pt"), map_location="cpu")
        # load model
        model = instantiate_from_config(config["model"])
        # model.load_state_dict(ckpt["model"])
        init_from_ckpt(model, ckpt, prefix="model", ignore_keys=ignore_keys)
        vae = instantiate_from_config(config["shapevae"])
        # vae.load_state_dict(ckpt["shapevae"], strict=False)
        init_from_ckpt(vae, ckpt, prefix="shapevae", ignore_keys=ignore_keys)
        if config.get("conditioner", None) is not None:
            conditioner = instantiate_from_config(config["conditioner"])
            init_from_ckpt(
                conditioner, ckpt, prefix="conditioner", ignore_keys=ignore_keys
            )
        else:
            conditioner = vae
        scheduler = instantiate_from_config(config["scheduler"])
        config["bbox_predictor"]["params"]["ckpt_path"] = os.path.join(
            ckpt_path, "p3sam.ckpt"
        )
        bbox_predictor = instantiate_from_config(config.get("bbox_predictor", None))
        model_kwargs = dict(
            vae=vae,
            model=model,
            scheduler=scheduler,
            conditioner=conditioner,
            bbox_predictor=bbox_predictor,  # TODO: add bbox predictor
            device=device,
            dtype=dtype,
        )
        model_kwargs.update(kwargs)
        return cls(**model_kwargs)

    def compile(self):
        self.vae = torch.compile(self.vae)
        self.model = torch.compile(self.model)
        self.conditioner = torch.compile(self.conditioner)

    def to(self, device=None, dtype=None):
        if dtype is not None:
            self.dtype = dtype
            self.vae.to(dtype=dtype)
            self.model.to(dtype=dtype)
            self.conditioner.to(dtype=dtype)
        if device is not None:
            self.device = torch.device(device)
            self.vae.to(device)
            self.model.to(device)
            self.conditioner.to(device)

    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(
            inspect.signature(self.scheduler.step).parameters.keys()
        )
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(
            inspect.signature(self.scheduler.step).parameters.keys()
        )
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def predict_bbox(
        self, mesh: trimesh.Trimesh, scale_box=1.0, drop_normal=True, seed=42
    ):
        """
        Predict the bounding box of the object surface.
        Args:
            obj_surface (`torch.Tensor`): [B, N, 3]
        Returns:
            `torch.Tensor`: [B, K, 2, 3] where K is the number of bounding boxes
        """
        if self.bbox_predictor is None:
            raise ValueError("bbox_predictor is not set.")
        aabb, face_ids, mesh = self.bbox_predictor.predict_aabb(
            mesh, post_process=True, seed=seed
        )
        # aabb, face_ids, mesh = self.bbox_predictor.predict_aabb(mesh, post_process=False)
        aabb = torch.from_numpy(aabb)
        return aabb

    def prepare_latents(
        self, batch_size, latent_shape, dtype, device, generator, latents=None
    ):
        # prepare latents for different parts
        shape = (batch_size, *latent_shape)
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but"
                f" requested an effective batch size of {batch_size}. Make sure the"
                " batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(
                shape, generator=generator, device=device, dtype=dtype
            )
        else:
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * getattr(self.scheduler, "init_noise_sigma", 1.0)
        return latents

    @synchronize_timer("Encode cond")
    def encode_cond(
        self,
        part_surface_inbbox,
        object_surface,
        do_classifier_free_guidance,
    ):
        bsz = object_surface.shape[0]
        cond = self.conditioner(part_surface_inbbox, object_surface)

        if do_classifier_free_guidance:
            # TODO: do_classifier_free_guidance, un_cond
            un_cond = {k: torch.zeros_like(v) for k, v in cond.items()}

            def cat_recursive(a, b):
                if isinstance(a, torch.Tensor):
                    return torch.cat([a, b], dim=0).to(self.dtype)
                out = {}
                for k in a.keys():
                    out[k] = cat_recursive(a[k], b[k])
                return out

            cond = cat_recursive(cond, un_cond)
        return cond

    def normalize_mesh(self, mesh):
        vertices = mesh.vertices
        min_xyz = np.min(vertices, axis=0)
        max_xyz = np.max(vertices, axis=0)
        center = (min_xyz + max_xyz) / 2.0
        # scale = np.max(np.linalg.norm(vertices - center, axis=1))
        scale = np.max(max_xyz - min_xyz) / 2 / 0.8
        vertices = (vertices - center) / scale
        mesh.vertices = vertices
        return mesh, center, scale

    def check_inputs(
        self,
        obj_surface=None,
        obj_surface_raw=None,
        mesh_path=None,
        mesh=None,
        aabb=None,
        part_surface_inbbox=None,
        seed=42,
    ):
        """
        Check the inputs of the pipeline.
        Args:
            obj_surface (`torch.Tensor`): [B, N, 3+3+1]
            mesh_path (`str`): path to the mesh file
            mesh (`trimesh.Trimesh`): mesh object
            aabb (`torch.Tensor`): [B, K, 2, 3]
            part_surface_inbbox (`torch.Tensor`): [B, K,N, 3+3+1]
        """
        if obj_surface is None:
            if mesh_path is None and (mesh is None and obj_surface_raw is None):
                raise ValueError(
                    "obj_surface or mesh_path/mesh/obj_surface_raw must be provided."
                )
        elif aabb is None or part_surface_inbbox is None:
            raise ValueError(
                "aabb and part_surface_inbbox must be provided if obj_surface is"
                " provided."
            )
        else:
            assert aabb.shape[0] == part_surface_inbbox.shape[0], "Batch size mismatch."
        center = np.zeros(3)
        scale = 1.0
        # 1. Load object surface and sample
        if obj_surface is None:
            if obj_surface_raw is None:
                if mesh is not None:
                    obj_surface_raw = SampleMesh(
                        mesh.vertices, mesh.faces, -1, seed=seed
                    )
                elif mesh_path is not None:
                    mesh = trimesh.load(mesh_path, force="mesh")
                    mesh, center, scale = self.normalize_mesh(mesh)
                    print(f"Normalize mesh: {center}, {scale}")
                    obj_surface_raw = SampleMesh(
                        mesh.vertices, mesh.faces, -1, seed=seed
                    )
                else:
                    raise ValueError("obj_surface or mesh_path/mesh must be provided.")
            rng = np.random.default_rng(seed=seed)
            obj_surface, _ = load_surface_points(
                rng,
                obj_surface_raw["random_surface"],
                obj_surface_raw["sharp_surface"],
                pc_size=81920,
                pc_sharpedge_size=0,
                return_sharpedge_label=True,
                return_normal=True,
            )
            obj_surface = obj_surface.unsqueeze(0)
        # 2. load aabb
        if aabb is None:
            aabb = self.predict_bbox(mesh, seed=seed)
            print(f"Get bbox from bbox_predictor: {aabb.shape}")
        else:
            if isinstance(aabb, np.ndarray):
                aabb = torch.from_numpy(aabb)
            # normalize aabb by mesh scale and center
            aabb = aabb.float()
            aabb = (aabb - torch.from_numpy(center).float()) / scale

        # 3. load part surface in bbox
        if part_surface_inbbox is None:
            part_surface_inbbox, valid_parts_mask = sample_bbox_points_from_trimesh(
                mesh, aabb, num_points=81920, seed=seed
            )
            aabb = aabb[valid_parts_mask]
            aabb = aabb.unsqueeze(0)
            part_surface_inbbox = part_surface_inbbox.unsqueeze(0)
        return (
            obj_surface,
            aabb,
            part_surface_inbbox,
            mesh,
            center,
            scale,
        )

    def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
        """
        See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298

        Args:
            timesteps (`torch.Tensor`):
                generate embedding vectors at these timesteps
            embedding_dim (`int`, *optional*, defaults to 512):
                dimension of the embeddings to generate
            dtype:
                data type of the generated embeddings

        Returns:
            `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
        """
        assert len(w.shape) == 1
        w = w * 1000.0

        half_dim = embedding_dim // 2
        emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
        emb = w.to(dtype)[:, None] * emb[None, :]
        emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
        if embedding_dim % 2 == 1:  # zero pad
            emb = torch.nn.functional.pad(emb, (0, 1))
        assert emb.shape == (w.shape[0], embedding_dim)
        return emb

    def _export(
        self,
        latents,
        output_type="trimesh",
        box_v=1.01,
        mc_level=0.0,
        num_chunks=20000,
        octree_resolution=256,
        mc_algo="mc",
        enable_pbar=True,
        **kwargs,
    ):
        if not output_type == "latent":
            latents = 1.0 / self.vae.scale_factor * latents
            latents = self.vae(latents)
            outputs = self.vae.latent2mesh_2(
                # outputs = self.vae.latents2mesh(
                latents,
                bounds=box_v,
                mc_level=mc_level,
                octree_depth=8,
                num_chunks=num_chunks,
                octree_resolution=octree_resolution,
                mc_mode=mc_algo,
                # enable_pbar=enable_pbar,
                **kwargs,
            )
        else:
            outputs = latents

        if output_type == "trimesh":
            outputs = export_to_trimesh(outputs)

        return outputs

    @torch.no_grad()
    @torch.autocast("cuda", dtype=torch.bfloat16)
    def __call__(
        self,
        obj_surface=None,
        obj_surface_raw=None,
        mesh_path=None,
        mesh=None,
        aabb=None,
        part_surface_inbbox=None,
        num_inference_steps: int = 50,
        timesteps: Optional[List[int]] = None,
        sigmas: Optional[List[float]] = None,
        eta: float = 0.0,
        # guidance_scale: float = 7.5,
        guidance_scale: float = -1.0,
        dual_guidance_scale: float = 10.5,
        dual_guidance: bool = True,
        generator=None,
        seed=42,
        # marching cubes
        box_v=1.01,
        octree_resolution=512,
        mc_level=-1 / 512,
        num_chunks=400000,
        mc_algo="mc",
        output_type: Optional[str] = "trimesh",
        enable_pbar=True,
        **kwargs,
    ):
        """
        Args:
            obj_surface (`torch.Tensor`): [B, N, 3+3+1]
            aabb (`torch.Tensor`): [B, K, 2, 3]
            part_surface_inbbox (`torch.Tensor`): [B, K,N, 3+3+1]
        Returns:
            `trimesh.Scene` : single object composed of multiple parts
        """
        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)
        do_classifier_free_guidance = guidance_scale >= 0 and not (
            hasattr(self.model, "guidance_embed") and self.model.guidance_embed is True
        )
        # 1. Check inputs and predict bbox if not provided
        device = self.device
        dtype = self.dtype
        obj_surface, aabb, part_surface_inbbox, mesh, center, scale = self.check_inputs(
            obj_surface,
            obj_surface_raw,
            mesh_path,
            mesh,
            aabb,
            part_surface_inbbox,
            seed=seed,
        )
        if self.verbose:
            # return gt mesh with bbox
            mesh_bbox = trimesh.Scene()
            if mesh is not None:
                mesh_bbox.add_geometry(mesh)
            else:
                mesh = trimesh.points.PointCloud(
                    obj_surface[0, :, :3].float().cpu().numpy()
                )
                mesh_bbox.add_geometry(mesh)
            for bbox in aabb[0]:
                box = trimesh.path.creation.box_outline()
                box.vertices *= (bbox[1] - bbox[0]).float().cpu().numpy()
                box.vertices += (bbox[0] + bbox[1]).float().cpu().numpy() / 2
                mesh_bbox.add_geometry(box)
        #  Convert to device and dtype
        obj_surface = obj_surface.to(device=device, dtype=dtype)
        aabb = aabb.to(device=device, dtype=dtype)
        part_surface_inbbox = part_surface_inbbox.to(device=device, dtype=dtype)
        batch_size, num_parts, N, dim = part_surface_inbbox.shape
        # TODO: support batch size > 1
        assert batch_size == 1, "Batch size > 1 is not supported yet."
        # 2. Prepare latent variables
        # TODO:allocate tokens for each parts
        num_tokens = torch.tensor(
            [self.allocate_tokens(x, self.vae.latent_shape[0]) for x in aabb],
            device=device,
        )
        latent_shape = self.vae.latent_shape
        latents = self.prepare_latents(
            num_parts, latent_shape, dtype, device, generator
        )
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
        # 3. condition
        cond = self.encode_cond(
            part_surface_inbbox.reshape(batch_size * num_parts, N, dim),
            obj_surface.expand(batch_size * num_parts, -1, -1),
            do_classifier_free_guidance,
        )
        # 4. guidance_cond for controling sampling
        guidance_cond = None
        if getattr(self.model, "guidance_cond_proj_dim", None) is not None:
            logger.info("Using lcm guidance scale")
            guidance_scale_tensor = torch.tensor(guidance_scale - 1).repeat(batch_size)
            guidance_cond = self.get_guidance_scale_embedding(
                guidance_scale_tensor, embedding_dim=self.model.guidance_cond_proj_dim
            ).to(device=device, dtype=latents.dtype)

        # 5. Prepare timesteps
        # NOTE: this is slightly different from common usage, we start from 0.
        sigmas = np.linspace(0, 1, num_inference_steps) if sigmas is None else sigmas
        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler,
            num_inference_steps,
            device,
            sigmas=sigmas,
        )

        torch.cuda.empty_cache()

        # 6. Denoising loop
        with synchronize_timer("Diffusion Sampling"):
            for i, t in enumerate(
                tqdm(timesteps, disable=not enable_pbar, desc="Diffusion Sampling:")
            ):
                # expand the latents if we are doing classifier free guidance
                if do_classifier_free_guidance:
                    latent_model_input = torch.cat([latents] * 2)
                    aabb = torch.repeat_interleave(aabb, 2, dim=0)
                else:
                    latent_model_input = latents

                # NOTE: we assume model get timesteps ranged from 0 to 1
                timestep = t.expand(latent_model_input.shape[0]).to(latents.dtype)
                timestep = timestep / self.scheduler.config.num_train_timesteps
                noise_pred = self.model(
                    latent_model_input,
                    timestep,
                    cond,
                    aabb=aabb,
                    num_tokens=num_tokens,
                    guidance_cond=guidance_cond,
                )

                if do_classifier_free_guidance:
                    noise_pred_cond, noise_pred_uncond = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (
                        noise_pred_cond - noise_pred_uncond
                    )

                # compute the previous noisy sample x_t -> x_t-1
                outputs = self.scheduler.step(noise_pred, t, latents)
                latents = outputs.prev_sample

                if callback is not None and i % callback_steps == 0:
                    step_idx = i // getattr(self.scheduler, "order", 1)
                    callback(step_idx, t, outputs)

        # latents2mesh
        # part_latents = torch.split(latents, num_tokens[0].tolist(), dim=1)
        out = trimesh.Scene()
        for i, part_latent in enumerate(latents):
            try:
                part_mesh = self._export(
                    latents=part_latent.unsqueeze(0),
                    output_type=output_type,
                    box_v=box_v,
                    mc_level=mc_level,
                    num_chunks=num_chunks,
                    octree_resolution=octree_resolution,
                    mc_algo=mc_algo,
                    enable_pbar=enable_pbar,
                )[0]
                out.add_geometry(part_mesh)
                random_color = np.random.randint(0, 255, size=3)
                part_mesh.visual.face_colors = random_color
            except Exception as e:
                logger.error(f"Failed to export part {i} with error {e}")
        print(f"Denormalize mesh: {center}, {scale}")
        for key in out.geometry.keys():
            _v = out.geometry[key].vertices
            _v = _v * scale + center
            out.geometry[key].vertices = _v

        if self.verbose:
            explode_object = explode_mesh(copy.deepcopy(out), explosion_scale=0.2)
            # add bbox into out
            out_bbox = trimesh.Scene()
            out_bbox.add_geometry(out)
            for bbox in aabb[0]:
                box = trimesh.path.creation.box_outline()
                box.vertices *= (bbox[1] - bbox[0]).float().cpu().numpy()
                box.vertices += (bbox[0] + bbox[1]).float().cpu().numpy() / 2
                box.vertices = box.vertices * scale + center
                out_bbox.add_geometry(box)
            return out, (out_bbox, mesh_bbox, explode_object)
        else:
            # return only the generated mesh
            return out, None