Spaces:
Running
on
Zero
Running
on
Zero
File size: 28,288 Bytes
7b75adb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 |
import numpy as np
import trimesh
import torch
import torch.nn.functional as F
from skimage import measure
from typing import Callable, Tuple, List, Union
from torch import nn
from tqdm import tqdm
from einops import repeat
import traceback
import pymeshlab
import tempfile
def random_sample_pointcloud(mesh: trimesh.Trimesh, num=30000, seed=42):
# points, face_idx = mesh.sample(num, return_index=True)
points, face_idx = trimesh.sample.sample_surface(mesh, num, seed=seed)
normals = mesh.face_normals[face_idx]
rng = np.random.default_rng(seed=seed)
index = rng.choice(num, num, replace=False)
return points[index], normals[index]
def sharp_sample_pointcloud(mesh: trimesh.Trimesh, num=16384):
V = mesh.vertices
N = mesh.face_normals
VN = mesh.vertex_normals
F = mesh.faces
VN2 = np.ones(V.shape[0])
for i in range(3):
dot = np.stack((VN2[F[:, i]], np.sum(VN[F[:, i]] * N, axis=-1)), axis=-1)
VN2[F[:, i]] = np.min(dot, axis=-1)
sharp_mask = VN2 < 0.985
# collect edge
edge_a = np.concatenate((F[:, 0], F[:, 1], F[:, 2]))
edge_b = np.concatenate((F[:, 1], F[:, 2], F[:, 0]))
sharp_edge = sharp_mask[edge_a] * sharp_mask[edge_b]
edge_a = edge_a[sharp_edge > 0]
edge_b = edge_b[sharp_edge > 0]
sharp_verts_a = V[edge_a]
sharp_verts_b = V[edge_b]
sharp_verts_an = VN[edge_a]
sharp_verts_bn = VN[edge_b]
weights = np.linalg.norm(sharp_verts_b - sharp_verts_a, axis=-1)
weights /= np.sum(weights)
random_number = np.random.rand(num)
w = np.random.rand(num, 1)
index = np.searchsorted(weights.cumsum(), random_number)
samples = w * sharp_verts_a[index] + (1 - w) * sharp_verts_b[index]
normals = w * sharp_verts_an[index] + (1 - w) * sharp_verts_bn[index]
return samples, normals
def SampleMesh(V, F, origin_num, seed=42):
"""Sample a mesh to get random points and normals.
Args:
V (np.ndarray): Vertices of the mesh.
F (np.ndarray): Faces of the mesh.
origin_num (int): Number of original faces to sample from.
Returns:
surface_data (dict): Dictionary containing sampled points and normals.
The dictionary contains:
- "random_surface": Sampled points and normals from the mesh.
- "random_surface_fill": Boolean array indicating whether the points are from the fill region.
- "sharp_surface": Sampled points and normals from the sharp edges of the mesh.
"""
mesh = trimesh.Trimesh(vertices=V, faces=F[:origin_num])
mesh_fill = trimesh.Trimesh(vertices=V, faces=F[origin_num:])
area = mesh.area
area_fill = mesh_fill.area
sample_num = 499712 // 2
num_fill = int(sample_num * (area_fill / (area + area_fill)))
num = sample_num - num_fill
# if not mesh.is_watertight:
# raise ValueError
random_surface, random_normal = random_sample_pointcloud(mesh, num=num, seed=seed)
if num_fill == 0:
random_surface_fill, random_normal_fill = np.zeros((0, 3)), np.zeros((0, 3))
else:
random_surface_fill, random_normal_fill = random_sample_pointcloud(
mesh_fill, num=num_fill, seed=seed
)
random_sharp_surface, sharp_normal = sharp_sample_pointcloud(mesh, num=sample_num)
# save_surface
surface = np.concatenate((random_surface, random_normal), axis=1).astype(np.float16)
surface_fill = np.concatenate(
(random_surface_fill, random_normal_fill), axis=1
).astype(np.float16)
sharp_surface = np.concatenate((random_sharp_surface, sharp_normal), axis=1).astype(
np.float16
)
a, b = np.ones(num), np.zeros(num_fill)
surface_data = {
"random_surface": np.concatenate((surface, surface_fill), axis=0),
"random_surface_fill": np.concatenate((a, b)).astype(bool),
"sharp_surface": sharp_surface,
}
return surface_data
def load_surface_points(
rng,
random_surface,
sharpedge_surface,
pc_size,
pc_sharpedge_size,
return_sharpedge_label=True,
return_normal=True,
):
"""
sample surface points based on pc_size and pc_sharpedge_size
Args:
rng: Random number generator
random_surface: Array of random surface points
sharpedge_surface: Array of sharp edge surface points
Returns:
surface: Array of surface points and normals
geo_points: Array of geo points
"""
surface_normal = []
if pc_size > 0:
ind = rng.choice(random_surface.shape[0], pc_size, replace=False)
random_surface = random_surface[ind]
if return_sharpedge_label:
sharpedge_label = np.zeros((pc_size, 1))
random_surface = np.concatenate((random_surface, sharpedge_label), axis=1)
surface_normal.append(random_surface)
if pc_sharpedge_size > 0:
ind_sharpedge = rng.choice(
sharpedge_surface.shape[0], pc_sharpedge_size, replace=False
)
sharpedge_surface = sharpedge_surface[ind_sharpedge]
if return_sharpedge_label:
sharpedge_label = np.ones((pc_sharpedge_size, 1))
sharpedge_surface = np.concatenate(
(sharpedge_surface, sharpedge_label), axis=1
)
surface_normal.append(sharpedge_surface)
surface_normal = np.concatenate(surface_normal, axis=0)
surface_normal = torch.FloatTensor(surface_normal)
surface = surface_normal[:, 0:3]
normal = surface_normal[:, 3:6]
assert surface.shape[0] == pc_size + pc_sharpedge_size
geo_points = 0.0
normal = torch.nn.functional.normalize(normal, p=2, dim=1)
if return_normal:
surface = torch.cat([surface, normal], dim=-1)
if return_sharpedge_label:
surface = torch.cat([surface, surface_normal[:, -1:]], dim=-1)
return surface, geo_points
def sample_bbox_points_from_trimesh(mesh, aabb, num_points, seed=42):
_faces = mesh.faces
_vertices = mesh.vertices
_faces = np.reshape(_faces, (-1))
num_parts = aabb.shape[0]
_points = _points = torch.from_numpy(_vertices[_faces])
_part_mask = torch.all(
(_points[None, :, :3] >= aabb[:, :1]) & (_points[None, :, :3] <= aabb[:, 1:]),
dim=-1,
)
_part_mask = torch.any(torch.reshape(_part_mask, (num_parts, -1, 3)), dim=-1)
faces_idx_in_bbox = [torch.nonzero(x).squeeze(-1).numpy() for x in _part_mask]
# in case some parts are empty(inside surface)
valid_parts_mask = torch.tensor(
[len(x) > 0 for x in faces_idx_in_bbox], dtype=torch.bool, device=_points.device
)
aabb = aabb[valid_parts_mask]
# print(len(faces_idx_in_bbox), len(aabb))
faces_idx_in_bbox = [x for x in faces_idx_in_bbox if len(x) > 0]
num_valid_parts = len(faces_idx_in_bbox)
# process valid parts
mesh_in_bbox = mesh.submesh(faces_idx_in_bbox, append=False)
points, normals = [], []
for part in mesh_in_bbox:
# part_points, face_idx = part.sample(num_points, return_index=True)
part_points, face_idx = trimesh.sample.sample_surface(
part, num_points, seed=seed
)
part_normals = part.face_normals[face_idx]
points.append(torch.from_numpy(part_points))
normals.append(torch.from_numpy(part_normals))
out = torch.concat(
[torch.stack(points, dim=0), torch.stack(normals, dim=0)], dim=-1
)
out = torch.concat(
[
out,
torch.zeros(
[num_valid_parts, num_points, 1], dtype=out.dtype, device=out.device
),
],
dim=-1,
) # add sharp edge label
return out, valid_parts_mask
def sample_surface_inbbox(
rng,
object_surface_raw,
aabb,
pc_size_bbox,
return_normal=True,
return_sharpedge_label=True,
):
"""
Sample surface points within the bounding box defined by aabb.
Args:
object_surface_raw: Raw surface points from the object
aabb: [K,2,3] Axis-aligned bounding box defined by min and max corners
pc_size_bbox: Number of points to sample within the bounding box
Returns:
part_surface_inbbox: Sampled surface points within the bounding box
"""
num_parts = aabb.shape[0]
object_all_surface = torch.from_numpy(
np.concatenate(
[
object_surface_raw["random_surface"],
object_surface_raw["sharp_surface"],
],
axis=0,
)
) # [N,6]
sharpedge_labels = torch.concat(
[
torch.zeros(object_surface_raw["random_surface"].shape[0], 1),
torch.ones(object_surface_raw["sharp_surface"].shape[0], 1),
],
dim=0,
)
sampled_masks = torch.all(
(object_all_surface[None, :, :3] >= aabb[:, :1])
& (object_all_surface[None, :, :3] <= aabb[:, 1:]),
dim=-1,
)
surfaces = []
valid_index = []
for idx, sampled_mask in enumerate(sampled_masks):
part_surface_inbbox = object_all_surface[sampled_mask]
sharpedge_label = sharpedge_labels[sampled_mask]
# TODO: drop inside parts
if part_surface_inbbox.shape[0] == 0:
continue
try:
ind = rng.choice(part_surface_inbbox.shape[0], pc_size_bbox, replace=False)
except ValueError:
ind = np.arange(part_surface_inbbox.shape[0])
ind = np.concatenate([
ind,
rng.choice(
part_surface_inbbox.shape[0],
pc_size_bbox - part_surface_inbbox.shape[0],
replace=True,
),
])
part_surface_inbbox = part_surface_inbbox[ind]
sharpedge_label = sharpedge_label[ind]
# point feat
surface = part_surface_inbbox[:, 0:3]
normal = part_surface_inbbox[:, 3:6]
# TODO: check normal
# normal = torch.nn.functional.normalize(normal, p=2, dim=1)
if return_normal:
surface = torch.cat([surface, normal], dim=-1)
if return_sharpedge_label:
surface = torch.cat(
[surface, sharpedge_label],
dim=-1,
)
surfaces.append(surface)
valid_index.append(idx)
surface = torch.stack(surfaces, dim=0)
return surface, torch.tensor(valid_index)
def explode_mesh(mesh, explosion_scale=0.4):
if isinstance(mesh, trimesh.Scene):
scene = mesh
elif isinstance(mesh, trimesh.Trimesh):
print("Warning: Single mesh provided, can't create exploded view")
scene = trimesh.Scene(mesh)
return scene
else:
print(f"Warning: Unexpected mesh type: {type(mesh)}")
scene = mesh
if len(scene.geometry) <= 1:
print("Only one geometry found - nothing to explode")
return scene
print(f"[EXPLODE_MESH] Starting mesh explosion with scale {explosion_scale}")
print(f"[EXPLODE_MESH] Processing {len(scene.geometry)} parts")
exploded_scene = trimesh.Scene()
part_centers = []
geometry_names = []
for geometry_name, geometry in scene.geometry.items():
if hasattr(geometry, "vertices"):
transform = scene.graph[geometry_name][0]
vertices_global = trimesh.transformations.transform_points(
geometry.vertices, transform
)
center = np.mean(vertices_global, axis=0)
part_centers.append(center)
geometry_names.append(geometry_name)
print(f"[EXPLODE_MESH] Part {geometry_name}: center = {center}")
if not part_centers:
print("No valid geometries with vertices found")
return scene
part_centers = np.array(part_centers)
global_center = np.mean(part_centers, axis=0)
print(f"[EXPLODE_MESH] Global center: {global_center}")
for i, (geometry_name, geometry) in enumerate(scene.geometry.items()):
if hasattr(geometry, "vertices"):
if i < len(part_centers):
part_center = part_centers[i]
direction = part_center - global_center
direction_norm = np.linalg.norm(direction)
if direction_norm > 1e-6:
direction = direction / direction_norm
else:
direction = np.random.randn(3)
direction = direction / np.linalg.norm(direction)
offset = direction * explosion_scale
else:
offset = np.zeros(3)
original_transform = scene.graph[geometry_name][0].copy()
new_transform = original_transform.copy()
new_transform[:3, 3] = new_transform[:3, 3] + offset
exploded_scene.add_geometry(
geometry, transform=new_transform, geom_name=geometry_name
)
print(
f"[EXPLODE_MESH] Part {geometry_name}: moved by"
f" {np.linalg.norm(offset):.4f}"
)
print("[EXPLODE_MESH] Mesh explosion complete")
return exploded_scene
def generate_dense_grid_points(
bbox_min: np.ndarray,
bbox_max: np.ndarray,
octree_depth: int = 7,
indexing: str = "ij",
octree_resolution: int = None,
):
length = bbox_max - bbox_min
num_cells = octree_resolution
if octree_resolution is None:
length = bbox_max - bbox_min
num_cells = np.exp2(octree_depth)
x = np.linspace(bbox_min[0], bbox_max[0], int(num_cells) + 1, dtype=np.float32)
y = np.linspace(bbox_min[1], bbox_max[1], int(num_cells) + 1, dtype=np.float32)
z = np.linspace(bbox_min[2], bbox_max[2], int(num_cells) + 1, dtype=np.float32)
[xs, ys, zs] = np.meshgrid(x, y, z, indexing=indexing)
xyz = np.stack((xs, ys, zs), axis=-1)
xyz = xyz.reshape(-1, 3)
grid_size = [int(num_cells) + 1, int(num_cells) + 1, int(num_cells) + 1]
return xyz, grid_size, length
def extract_near_surface_volume_fn(input_tensor: torch.Tensor, alpha: float):
"""
修复维度问题的PyTorch实现
Args:
input_tensor: shape [D, D, D], torch.float16
alpha: 标量偏移值
Returns:
mask: shape [D, D, D], torch.int32 表面掩码
"""
device = input_tensor.device
D = input_tensor.shape[0]
signed_val = 0.0
# 添加偏移并处理无效值
val = input_tensor + alpha
valid_mask = val > -9000 # 假设-9000是无效值
# 改进的邻居获取函数(保持维度一致)
def get_neighbor(t, shift, axis):
"""根据指定轴进行位移并保持维度一致"""
if shift == 0:
return t.clone()
# 确定填充轴(输入为[D, D, D]对应z,y,x轴)
pad_dims = [0, 0, 0, 0, 0, 0] # 格式:[x前,x后,y前,y后,z前,z后]
# 根据轴类型设置填充
if axis == 0: # x轴(最后一个维度)
pad_idx = 0 if shift > 0 else 1
pad_dims[pad_idx] = abs(shift)
elif axis == 1: # y轴(中间维度)
pad_idx = 2 if shift > 0 else 3
pad_dims[pad_idx] = abs(shift)
elif axis == 2: # z轴(第一个维度)
pad_idx = 4 if shift > 0 else 5
pad_dims[pad_idx] = abs(shift)
# 执行填充(添加batch和channel维度适配F.pad)
padded = F.pad(
t.unsqueeze(0).unsqueeze(0), pad_dims[::-1], mode="replicate"
) # 反转顺序适配F.pad
# 构建动态切片索引
slice_dims = [slice(None)] * 3 # 初始化为全切片
if axis == 0: # x轴(dim=2)
if shift > 0:
slice_dims[0] = slice(shift, None)
else:
slice_dims[0] = slice(None, shift)
elif axis == 1: # y轴(dim=1)
if shift > 0:
slice_dims[1] = slice(shift, None)
else:
slice_dims[1] = slice(None, shift)
elif axis == 2: # z轴(dim=0)
if shift > 0:
slice_dims[2] = slice(shift, None)
else:
slice_dims[2] = slice(None, shift)
# 应用切片并恢复维度
padded = padded.squeeze(0).squeeze(0)
sliced = padded[slice_dims]
return sliced
# 获取各方向邻居(确保维度一致)
left = get_neighbor(val, 1, axis=0) # x方向
right = get_neighbor(val, -1, axis=0)
back = get_neighbor(val, 1, axis=1) # y方向
front = get_neighbor(val, -1, axis=1)
down = get_neighbor(val, 1, axis=2) # z方向
up = get_neighbor(val, -1, axis=2)
# 处理边界无效值(使用where保持维度一致)
def safe_where(neighbor):
return torch.where(neighbor > -9000, neighbor, val)
left = safe_where(left)
right = safe_where(right)
back = safe_where(back)
front = safe_where(front)
down = safe_where(down)
up = safe_where(up)
# 计算符号一致性(转换为float32确保精度)
sign = torch.sign(val.to(torch.float32))
neighbors_sign = torch.stack(
[
torch.sign(left.to(torch.float32)),
torch.sign(right.to(torch.float32)),
torch.sign(back.to(torch.float32)),
torch.sign(front.to(torch.float32)),
torch.sign(down.to(torch.float32)),
torch.sign(up.to(torch.float32)),
],
dim=0,
)
# 检查所有符号是否一致
same_sign = torch.all(neighbors_sign == sign, dim=0)
# 生成最终掩码
mask = (~same_sign).to(torch.int32)
return mask * valid_mask.to(torch.int32)
@torch.no_grad()
def extract_geometry_fast(
geometric_func: Callable,
device: torch.device,
batch_size: int = 1,
bounds: Union[Tuple[float], List[float], float] = (
-1.25,
-1.25,
-1.25,
1.25,
1.25,
1.25,
),
octree_depth: int = 7,
num_chunks: int = 10000,
disable: bool = True,
mc_level: float = -1 / 512,
octree_resolution: int = None,
diffdmc=None,
rotation_matrix=None,
mc_mode="mc",
dtype=torch.float16,
min_resolution: int = 95,
):
"""
Args:
geometric_func:
device:
bounds:
octree_depth:
batch_size:
num_chunks:
disable:
Returns:
"""
if isinstance(bounds, float):
bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]
if octree_resolution is None:
octree_resolution = 2**octree_depth
assert (
octree_resolution >= 256
), "octree resolution must be at least 256 for fast inference"
resolutions = []
if octree_resolution < min_resolution:
resolutions.append(octree_resolution)
while octree_resolution >= min_resolution:
resolutions.append(octree_resolution)
octree_resolution = octree_resolution // 2
resolutions.reverse()
bbox_min = np.array(bounds[0:3])
bbox_max = np.array(bounds[3:6])
bbox_size = bbox_max - bbox_min
dilate = nn.Conv3d(1, 1, 3, padding=1, bias=False, device=device, dtype=dtype)
dilate.weight = torch.nn.Parameter(
torch.ones(dilate.weight.shape, dtype=dtype, device=device)
)
xyz_samples, grid_size, length = generate_dense_grid_points(
bbox_min=bbox_min,
bbox_max=bbox_max,
octree_resolution=resolutions[0],
indexing="ij",
)
grid_size = np.array(grid_size)
xyz_samples = torch.FloatTensor(xyz_samples).to(device).half()
if mc_level == -1:
print(
f"Training with soft labels, inference with sigmoid and marching cubes"
f" level 0."
)
elif mc_level == 0:
print(f"VAE Trained with TSDF, inference with marching cubes level 0.")
else:
print(
"VAE Trained with Occupancy, inference with marching cubes level"
f" {mc_level}."
)
batch_logits = []
for start in tqdm(
range(0, xyz_samples.shape[0], num_chunks),
desc=f"MC Level {mc_level} Implicit Function:",
disable=disable,
leave=False,
):
queries = xyz_samples[start : start + num_chunks, :]
batch_queries = repeat(queries, "p c -> b p c", b=batch_size)
logits = geometric_func(batch_queries)
if mc_level == -1:
mc_level = 0
print(
f"Training with soft labels, inference with sigmoid and marching cubes"
f" level 0."
)
logits = torch.sigmoid(logits) * 2 - 1
batch_logits.append(logits)
grid_logits = (
torch.cat(batch_logits, dim=1)
.view((batch_size, grid_size[0], grid_size[1], grid_size[2]))
.half()
)
for octree_depth_now in resolutions[1:]:
grid_size = np.array([octree_depth_now + 1] * 3)
resolution = bbox_size / octree_depth_now
next_index = torch.zeros(tuple(grid_size), dtype=dtype, device=device)
if octree_depth_now == resolutions[-1]:
next_logits = torch.full(
next_index.shape, float("nan"), dtype=dtype, device=device
)
else:
next_logits = torch.full(
next_index.shape, -10000.0, dtype=dtype, device=device
)
FN = extract_near_surface_volume_fn
curr_points = FN(grid_logits.squeeze(0), mc_level)
curr_points += grid_logits.squeeze(0).abs() < min(
0.95, 0.95 * 128 * 4 / octree_depth_now
)
if octree_depth_now > 510:
expand_num = 0
else:
expand_num = 1
for i in range(expand_num):
curr_points = dilate(curr_points.unsqueeze(0).to(dtype)).squeeze(0)
(cidx_x, cidx_y, cidx_z) = torch.where(curr_points > 0)
next_index[cidx_x * 2, cidx_y * 2, cidx_z * 2] = 1
for i in range(1):
next_index = dilate(next_index.unsqueeze(0)).squeeze(0)
nidx = torch.where(next_index > 0)
next_points = torch.stack(nidx, dim=1)
next_points = next_points * torch.tensor(
resolution, device=device
) + torch.tensor(bbox_min, device=device)
batch_logits = []
for start in tqdm(
range(0, next_points.shape[0], num_chunks),
desc=f"MC Level {octree_depth_now + 1} Implicit Function:",
disable=disable,
leave=False,
):
queries = next_points[start : start + num_chunks, :]
batch_queries = repeat(queries, "p c -> b p c", b=batch_size)
logits = geometric_func(batch_queries)
if mc_level == -1:
mc_level = 0
print(
f"Training with soft labels, inference with sigmoid and marching"
f" cubes level 0."
)
logits = torch.sigmoid(logits) * 2 - 1
batch_logits.append(logits)
grid_logits = torch.cat(batch_logits, dim=1).half()
next_logits[nidx] = grid_logits[0]
grid_logits = next_logits.unsqueeze(0)
# s_mc = time.time()
mesh_v_f = []
has_surface = np.zeros((batch_size,), dtype=np.bool_)
for i in range(batch_size):
try:
if mc_mode == "mc":
if len(resolutions) > 1:
mask = (next_index > 0).cpu().numpy()
grid_logits = grid_logits.cpu().numpy()
vertices, faces, normals, _ = measure.marching_cubes(
grid_logits[i], mc_level, method="lewiner", mask=mask
)
else:
vertices, faces, normals, _ = measure.marching_cubes(
grid_logits[i].cpu().numpy(), mc_level, method="lewiner"
)
vertices = vertices / (grid_size - 1) * bbox_size + bbox_min
# vertices[:, [0, 1]] = vertices[:, [1, 0]]
elif mc_mode == "dmc":
torch.cuda.empty_cache()
grid_logits = -grid_logits[i]
grid_logits = grid_logits.to(torch.float32).contiguous()
verts, faces = diffdmc(
grid_logits, deform=None, return_quads=False, normalize=False
)
verts = verts * torch.tensor(resolution, device=device) + torch.tensor(
bbox_min, device=device
)
vertices = verts.detach().cpu().numpy()
faces = faces.detach().cpu().numpy()[:, ::-1]
elif mc_mode == "odc":
# https://github.com/KAIST-Visual-AI-Group/ODC
from .occupancy_dual_contouring import occupancy_dual_contouring
import torch.nn.functional as F
odc = occupancy_dual_contouring("cuda")
size = grid_logits.shape[-1]
grid_logits = grid_logits.reshape(1, 1, size, size, size)
def implicit_function(xyz):
xyz = xyz.reshape(1, -1, 1, 1, 3).float()
# print(grid_logits.dtype, xyz.dtype)
outputs = F.grid_sample(grid_logits.float(), xyz)
outputs = -outputs.reshape(-1)
return outputs
num_cells = (
octree_resolution
if octree_resolution is not None
else np.exp2(octree_depth)
)
vertices, triangles = odc.extract_mesh(
implicit_function,
isolevel=mc_level,
min_coord=bbox_min,
max_coord=bbox_max,
num_grid=1024,
)
vertices = vertices.detach().cpu().numpy()
faces = triangles.detach().cpu().numpy()[:, ::-1]
else:
raise ValueError(f"Unknown marching cubes mode: {mc_mode}")
mesh_v_f.append((vertices.astype(np.float32), np.ascontiguousarray(faces)))
has_surface[i] = True
except ValueError:
traceback.print_exc()
mesh_v_f.append((None, None))
has_surface[i] = False
except RuntimeError:
traceback.print_exc()
mesh_v_f.append((None, None))
has_surface[i] = False
return mesh_v_f, has_surface
def pymeshlab2trimesh(mesh: pymeshlab.MeshSet):
with tempfile.NamedTemporaryFile(suffix=".ply", delete=False) as temp_file:
mesh.save_current_mesh(temp_file.name)
mesh = trimesh.load(temp_file.name)
# 检查加载的对象类型
if isinstance(mesh, trimesh.Scene):
combined_mesh = trimesh.Trimesh()
# 如果是Scene,遍历所有的geometry并合并
for geom in mesh.geometry.values():
combined_mesh = trimesh.util.concatenate([combined_mesh, geom])
mesh = combined_mesh
return mesh
def trimesh2pymeshlab(mesh: trimesh.Trimesh):
with tempfile.NamedTemporaryFile(suffix=".ply", delete=False) as temp_file:
if isinstance(mesh, trimesh.scene.Scene):
for idx, obj in enumerate(mesh.geometry.values()):
if idx == 0:
temp_mesh = obj
else:
temp_mesh = temp_mesh + obj
mesh = temp_mesh
mesh.export(temp_file.name)
mesh = pymeshlab.MeshSet()
mesh.load_new_mesh(temp_file.name)
return mesh
def remove_overlength_edge(mesh: pymeshlab.MeshSet, max_length: float):
mesh.apply_filter("compute_selection_by_edge_length", threshold=max_length)
mesh.apply_filter("compute_selection_transfer_face_to_vertex", inclusive=False)
mesh.apply_filter("meshing_remove_selected_vertices_and_faces")
return mesh
def remove_floater(mesh: pymeshlab.MeshSet):
mesh.apply_filter(
"compute_selection_by_small_disconnected_components_per_face", nbfaceratio=0.005
)
mesh.apply_filter("compute_selection_transfer_face_to_vertex", inclusive=False)
mesh.apply_filter("meshing_remove_selected_vertices_and_faces")
return mesh
def fix_mesh(mesh: trimesh.Trimesh):
ms = trimesh2pymeshlab(mesh)
ms = remove_overlength_edge(ms, max_length=8 / 512)
ms = remove_floater(ms)
mesh = pymeshlab2trimesh(ms)
return mesh
|