Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,922 Bytes
be73458 7b75adb be73458 7b75adb be73458 7b75adb be73458 7b75adb be73458 7b75adb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import gradio as gr
import os
import sys
import argparse
import numpy as np
import trimesh
from pathlib import Path
import torch
import pytorch_lightning as pl
import spaces
sys.path.append('P3-SAM')
from demo.auto_mask import AutoMask
from demo.auto_mask_no_postprocess import AutoMask as AutoMaskNoPostProcess
sys.path.append('XPart')
from partgen.partformer_pipeline import PartFormerPipeline
from partgen.utils.misc import get_config_from_file
automask = AutoMask()
automask_no_postprocess = AutoMaskNoPostProcess(automask_instance=automask)
def _load_pipeline():
pl.seed_everything(2026, workers=True)
cfg_path = str(Path(__file__).parent / "XPart/partgen/config" / "infer.yaml")
config = get_config_from_file(cfg_path)
assert hasattr(config, "ckpt") or hasattr(
config, "ckpt_path"
), "ckpt or ckpt_path must be specified in config"
pipeline = PartFormerPipeline.from_pretrained(
config=config,
verbose=True,
ignore_keys=config.get("ignore_keys", []),
)
device = "cuda"
pipeline.to(device=device, dtype=torch.float32)
return pipeline
_PIPELINE = _load_pipeline()
output_path = 'P3-SAM/results/gradio'
os.makedirs(output_path, exist_ok=True)
@spaces.GPU
def segment(mesh_path, connectivity=True, postprocess=True, postprocess_threshold=0.95, seed=42, gr_state=None):
if mesh_path is None:
gr.Warning("No Input Mesh")
gr_state[0] = (None, None)
return None, None
mesh = trimesh.load(mesh_path, force='mesh', process=False)
if connectivity:
aabb, face_ids, mesh = automask.predict_aabb(mesh, seed=seed, is_parallel=False, post_process=postprocess, threshold=postprocess_threshold)
else:
aabb, face_ids, mesh = automask_no_postprocess.predict_aabb(mesh, seed=seed, is_parallel=False, post_process=False)
color_map = {}
unique_ids = np.unique(face_ids)
for i in unique_ids:
if i == -1:
continue
part_color = np.random.rand(3) * 255
color_map[i] = part_color
face_colors = []
for i in face_ids:
if i == -1:
face_colors.append([0, 0, 0])
else:
face_colors.append(color_map[i])
face_colors = np.array(face_colors).astype(np.uint8)
mesh_save = mesh.copy()
mesh_save.visual.face_colors = face_colors
file_path = os.path.join(output_path, 'segment_mesh.glb')
mesh_save.export(file_path)
face_id_save_path = os.path.join(output_path, 'face_id.npy')
np.save(face_id_save_path, face_ids)
gr_state[0] = (aabb, mesh_path)
return file_path, face_id_save_path
@spaces.GPU
def generate(mesh_path, seed=42, gr_state=None):
if mesh_path is None:
gr.Warning("No Input Mesh")
gr_state[0] = (None, None)
return None, None, None
if gr_state[0][0] is None or mesh_path != gr_state[0][1]:
gr.Warning("Please segment the mesh first")
return None, None, None
aabb = gr_state[0][0]
# Ensure deterministic behavior per request
try:
pl.seed_everything(int(seed), workers=True)
except Exception:
pl.seed_everything(2026, workers=True)
additional_params = {"output_type": "trimesh"}
obj_mesh, (out_bbox, mesh_gt_bbox, explode_object) = _PIPELINE(
mesh_path=mesh_path,
aabb=aabb,
octree_resolution=512,
**additional_params,
)
# Export all results to temporary files for Gradio Model3D
obj_path = os.path.join(output_path, 'obj_mesh.glb')
out_bbox_path = os.path.join(output_path, 'out_bbox.glb')
explode_path = os.path.join(output_path, 'explode.glb')
obj_mesh.export(obj_path)
out_bbox.export(out_bbox_path)
explode_object.export(explode_path)
return obj_path, out_bbox_path, explode_path
with gr.Blocks() as demo:
gr.Markdown(
'''
# ☯️ Hunyuan3D Part:P3-SAM&XPart
This demo allows you to generate parts given a 3D model using Hunyuan3D-Part.
First segment the 3D model using P3-SAM and then generate parts using XPart.
'''
)
with gr.Row():
with gr.Column():
# P3-SAM
gr.Markdown(
'''
## P3-SAM: Native 3D Part Segmentation
[Paper](https://arxiv.org/abs/2509.06784) | [Project Page](https://murcherful.github.io/P3-SAM/) | [Code](https://github.com/Tencent-Hunyuan/Hunyuan3D-Part/P3-SAM/) | [Model](https://huggingface.co/tencent/Hunyuan3D-Part)
This is a demo of P3-SAM, a native 3D part segmentation method that can segment a mesh into different parts.
Input a mesh and push the "Segment" button to get the segmentation results.
'''
)
p3sam_button = gr.Button("Segment")
p3sam_input = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="Input Mesh")
p3sam_output = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="Segmentation Result")
p3sam_face_id_output = gr.File(label='Face ID')
p3sam_conectivity = gr.Checkbox(value=True, label="Connectivity")
p3sam_postprocess = gr.Checkbox(value=True, label="Post-processing")
p3sam_postprocess_threshold = gr.Number(value=0.95, label="Post-processing Threshold")
p3sam_seed = gr.Number(value=42, label="Random Seed")
gr.Markdown(
'''
P3-SAM will clean your mesh. To get face-aligned labels, you can download the "Segmentation Result" and "Face ID".
You can also use the "Connectivity" and "Post-processing" options to control the behavior of the algorithm.
The "Post-processing" will merge the small parts according to the threshold. The smaller the threshold, the more parts will be merged.
'''
)
gr.Examples(examples=[
'P3-SAM/demo/assets/1.glb',
'P3-SAM/demo/assets/2.glb',
'P3-SAM/demo/assets/4.glb',
'XPart/data/000.glb',
'XPart/data/001.glb',
'XPart/data/002.glb',
'XPart/data/003.glb',
'XPart/data/004.glb',
],
inputs = [p3sam_input],
example_labels=[
'Female Warrior',
'Suspended Island',
'Beetle Car',
'Koi Fish',
'Motorcycle',
'Gundam',
'Computer Desk',
'Coffee Machine'
]
)
with gr.Column():
# XPart
gr.Markdown(
'''
## XPart: High-fidelity and Structure-coherent Shapede Composition
[Paper](https://arxiv.org/abs/2509.08643) | [Project Page](https://yanxinhao.github.io/Projects/X-Part/) | [Code](https://github.com/Tencent-Hunyuan/Hunyuan3D-Part/XPart/) | [Model](https://huggingface.co/tencent/Hunyuan3D-Part)
This is a demo of XPart, a high-fidelity and structure-coherent shape-decomposition method that can generate parts from a 3D model.
Input a mesh, segment it using P3-SAM on the left, and push the "Generate" button to get the generated parts.
''' )
xpart_button = gr.Button("Generate")
xpart_output = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="Generated Parts")
xpart_output_bbox = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="Gnerated Parts with BBox")
xpart_output_exploded = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="Exploded Object")
xpart_seed = gr.Number(value=42, label="Random Seed")
gr_state = gr.State(value=[(None, None)])
p3sam_button.click(segment, inputs=[p3sam_input, p3sam_conectivity, p3sam_postprocess, p3sam_postprocess_threshold, p3sam_seed, gr_state], outputs=[p3sam_output, p3sam_face_id_output])
xpart_button.click(generate, inputs=[p3sam_input, xpart_seed, gr_state], outputs=[xpart_output, xpart_output_bbox, xpart_output_exploded])
if __name__ == '__main__':
demo.launch(server_name='0.0.0.0', server_port=8080)
|