File size: 7,922 Bytes
be73458
7b75adb
 
 
 
 
 
be73458
7b75adb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be73458
7b75adb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be73458
 
7b75adb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be73458
7b75adb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import gradio as gr
import os
import sys
import argparse
import numpy as np
import trimesh
from pathlib import Path
import torch
import pytorch_lightning as pl
import spaces

sys.path.append('P3-SAM')
from demo.auto_mask import AutoMask
from demo.auto_mask_no_postprocess import AutoMask as AutoMaskNoPostProcess
sys.path.append('XPart')
from partgen.partformer_pipeline import PartFormerPipeline
from partgen.utils.misc import get_config_from_file

automask = AutoMask()
automask_no_postprocess = AutoMaskNoPostProcess(automask_instance=automask)

def _load_pipeline():
    pl.seed_everything(2026, workers=True)
    cfg_path = str(Path(__file__).parent / "XPart/partgen/config" / "infer.yaml")
    config = get_config_from_file(cfg_path)
    assert hasattr(config, "ckpt") or hasattr(
        config, "ckpt_path"
    ), "ckpt or ckpt_path must be specified in config"
    pipeline = PartFormerPipeline.from_pretrained(
        config=config,
        verbose=True,
        ignore_keys=config.get("ignore_keys", []),
    )

    device = "cuda"
    pipeline.to(device=device, dtype=torch.float32)
    return pipeline

_PIPELINE = _load_pipeline()

output_path = 'P3-SAM/results/gradio'
os.makedirs(output_path, exist_ok=True)

@spaces.GPU
def segment(mesh_path, connectivity=True, postprocess=True, postprocess_threshold=0.95, seed=42, gr_state=None):
    if mesh_path is None:
        gr.Warning("No Input Mesh")
        gr_state[0] = (None, None)
        return None, None
    mesh = trimesh.load(mesh_path, force='mesh', process=False)
    if connectivity:
        aabb, face_ids, mesh = automask.predict_aabb(mesh, seed=seed, is_parallel=False, post_process=postprocess, threshold=postprocess_threshold)
    else:
        aabb, face_ids, mesh = automask_no_postprocess.predict_aabb(mesh, seed=seed, is_parallel=False, post_process=False)
    color_map = {}
    unique_ids = np.unique(face_ids)
    for i in unique_ids:
        if i == -1:
            continue
        part_color = np.random.rand(3) * 255
        color_map[i] = part_color
    face_colors = []
    for i in face_ids:
        if i == -1:
            face_colors.append([0, 0, 0])
        else:
            face_colors.append(color_map[i])
    face_colors = np.array(face_colors).astype(np.uint8)
    mesh_save = mesh.copy()
    mesh_save.visual.face_colors = face_colors

    file_path = os.path.join(output_path, 'segment_mesh.glb')
    mesh_save.export(file_path)
    face_id_save_path = os.path.join(output_path, 'face_id.npy')
    np.save(face_id_save_path, face_ids)
    gr_state[0] = (aabb, mesh_path)
    return file_path, face_id_save_path

@spaces.GPU
def generate(mesh_path, seed=42, gr_state=None):
    if mesh_path is None:
        gr.Warning("No Input Mesh")
        gr_state[0] = (None, None)
        return None, None, None
    if gr_state[0][0] is None or mesh_path != gr_state[0][1]:
        gr.Warning("Please segment the mesh first")
        return None, None, None
    
    aabb = gr_state[0][0]
    # Ensure deterministic behavior per request
    try:
        pl.seed_everything(int(seed), workers=True)
    except Exception:
        pl.seed_everything(2026, workers=True)
    additional_params = {"output_type": "trimesh"}
    obj_mesh, (out_bbox, mesh_gt_bbox, explode_object) = _PIPELINE(
        mesh_path=mesh_path,
        aabb=aabb,
        octree_resolution=512,
        **additional_params,
    )
    # Export all results to temporary files for Gradio Model3D
    obj_path = os.path.join(output_path, 'obj_mesh.glb')
    out_bbox_path = os.path.join(output_path, 'out_bbox.glb')
    explode_path = os.path.join(output_path, 'explode.glb')
    obj_mesh.export(obj_path)
    out_bbox.export(out_bbox_path)
    explode_object.export(explode_path)
    return obj_path, out_bbox_path, explode_path

with gr.Blocks() as demo:
    gr.Markdown(
'''
# ☯️ Hunyuan3D Part:P3-SAM&XPart
This demo allows you to generate parts given a 3D model using Hunyuan3D-Part.
First segment the 3D model using P3-SAM and then generate parts using XPart.
'''
    )
    with gr.Row():
        with gr.Column():
            # P3-SAM
            gr.Markdown(
'''
## P3-SAM: Native 3D Part Segmentation

[Paper](https://arxiv.org/abs/2509.06784) | [Project Page](https://murcherful.github.io/P3-SAM/) | [Code](https://github.com/Tencent-Hunyuan/Hunyuan3D-Part/P3-SAM/) | [Model](https://huggingface.co/tencent/Hunyuan3D-Part)

This is a demo of P3-SAM, a native 3D part segmentation method that can segment a mesh into different parts.
Input a mesh and push the "Segment" button to get the segmentation results.
'''
            )
            p3sam_button = gr.Button("Segment")
            p3sam_input = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="Input Mesh")
            p3sam_output = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="Segmentation Result")
            p3sam_face_id_output = gr.File(label='Face ID')
            p3sam_conectivity = gr.Checkbox(value=True, label="Connectivity")
            p3sam_postprocess = gr.Checkbox(value=True, label="Post-processing")
            p3sam_postprocess_threshold = gr.Number(value=0.95, label="Post-processing Threshold")
            p3sam_seed = gr.Number(value=42, label="Random Seed")
            gr.Markdown(
'''
P3-SAM will clean your mesh. To get face-aligned labels, you can download the "Segmentation Result" and "Face ID".
You can also use the "Connectivity" and "Post-processing" options to control the behavior of the algorithm.
The "Post-processing" will merge the small parts according to the threshold. The smaller the threshold, the more parts will be merged.
'''
            )
            gr.Examples(examples=[
                'P3-SAM/demo/assets/1.glb',
                'P3-SAM/demo/assets/2.glb',
                'P3-SAM/demo/assets/4.glb',
                'XPart/data/000.glb',
                'XPart/data/001.glb',
                'XPart/data/002.glb',
                'XPart/data/003.glb',
                'XPart/data/004.glb',
                ],
                inputs = [p3sam_input],
                example_labels=[
                    'Female Warrior',
                    'Suspended Island',
                    'Beetle Car',
                    'Koi Fish',
                    'Motorcycle',
                    'Gundam',
                    'Computer Desk',
                    'Coffee Machine'
                ]
            )
        with gr.Column():
            # XPart
            gr.Markdown(
'''
## XPart: High-fidelity and Structure-coherent Shapede Composition  

[Paper](https://arxiv.org/abs/2509.08643) | [Project Page](https://yanxinhao.github.io/Projects/X-Part/) | [Code](https://github.com/Tencent-Hunyuan/Hunyuan3D-Part/XPart/) | [Model](https://huggingface.co/tencent/Hunyuan3D-Part)

This is a demo of XPart, a high-fidelity and structure-coherent shape-decomposition method that can generate parts from a 3D model.
Input a mesh, segment it using P3-SAM on the left, and push the "Generate" button to get the generated parts.
'''         )
            xpart_button = gr.Button("Generate")
            xpart_output = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="Generated Parts")
            xpart_output_bbox = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="Gnerated Parts with BBox")
            xpart_output_exploded = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="Exploded Object")
            xpart_seed = gr.Number(value=42, label="Random Seed")
        gr_state = gr.State(value=[(None, None)])
    p3sam_button.click(segment, inputs=[p3sam_input, p3sam_conectivity, p3sam_postprocess, p3sam_postprocess_threshold, p3sam_seed, gr_state], outputs=[p3sam_output, p3sam_face_id_output])
    xpart_button.click(generate, inputs=[p3sam_input, xpart_seed, gr_state], outputs=[xpart_output, xpart_output_bbox, xpart_output_exploded])


if __name__ == '__main__':
    demo.launch(server_name='0.0.0.0', server_port=8080)