Spaces:
Running
on
Zero
Running
on
Zero
File size: 52,920 Bytes
7b75adb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 |
import os
import sys
import torch
import torch.nn as nn
import numpy as np
import argparse
import trimesh
from sklearn.decomposition import PCA
import fpsample
from tqdm import tqdm
import threading
import random
# from tqdm.notebook import tqdm
import time
import copy
import shutil
from pathlib import Path
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor, as_completed
from collections import defaultdict
import numba
from numba import njit
sys.path.append('..')
from model import build_P3SAM, load_state_dict
class P3SAM(nn.Module):
def __init__(self):
super().__init__()
build_P3SAM(self)
def load_state_dict(self,
ckpt_path=None,
state_dict=None,
strict=True,
assign=False,
ignore_seg_mlp=False,
ignore_seg_s2_mlp=False,
ignore_iou_mlp=False):
load_state_dict(self,
ckpt_path=ckpt_path,
state_dict=state_dict,
strict=strict,
assign=assign,
ignore_seg_mlp=ignore_seg_mlp,
ignore_seg_s2_mlp=ignore_seg_s2_mlp,
ignore_iou_mlp=ignore_iou_mlp)
def forward(self, feats, points, point_prompt, iter=1):
'''
feats: [K, N, 512]
points: [K, N, 3]
point_prompt: [K, N, 3]
'''
# print(feats.shape, points.shape, point_prompt.shape)
point_num = points.shape[1]
feats = feats.transpose(0, 1) # [N, K, 512]
points = points.transpose(0, 1) # [N, K, 3]
point_prompt = point_prompt.transpose(0, 1) # [N, K, 3]
feats_seg = torch.cat([feats, points, point_prompt], dim=-1) # [N, K, 512+3+3]
# 预测mask stage-1
pred_mask_1 = self.seg_mlp_1(feats_seg).squeeze(-1) # [N, K]
pred_mask_2 = self.seg_mlp_2(feats_seg).squeeze(-1) # [N, K]
pred_mask_3 = self.seg_mlp_3(feats_seg).squeeze(-1) # [N, K]
pred_mask = torch.stack(
[pred_mask_1, pred_mask_2, pred_mask_3], dim=-1
) # [N, K, 3]
for _ in range(iter):
# 预测mask stage-2
feats_seg_2 = torch.cat([feats_seg, pred_mask], dim=-1) # [N, K, 512+3+3+3]
feats_seg_global = self.seg_s2_mlp_g(feats_seg_2) # [N, K, 512]
feats_seg_global = torch.max(feats_seg_global, dim=0).values # [K, 512]
feats_seg_global = feats_seg_global.unsqueeze(0).repeat(
point_num, 1, 1
) # [N, K, 512]
feats_seg_3 = torch.cat(
[feats_seg_global, feats_seg_2], dim=-1
) # [N, K, 512+3+3+3+512]
pred_mask_s2_1 = self.seg_s2_mlp_1(feats_seg_3).squeeze(-1) # [N, K]
pred_mask_s2_2 = self.seg_s2_mlp_2(feats_seg_3).squeeze(-1) # [N, K]
pred_mask_s2_3 = self.seg_s2_mlp_3(feats_seg_3).squeeze(-1) # [N, K]
pred_mask_s2 = torch.stack(
[pred_mask_s2_1, pred_mask_s2_2, pred_mask_s2_3], dim=-1
) # [N,, K 3]
pred_mask = pred_mask_s2
mask_1 = torch.sigmoid(pred_mask_s2_1).to(dtype=torch.float32) # [N, K]
mask_2 = torch.sigmoid(pred_mask_s2_2).to(dtype=torch.float32) # [N, K]
mask_3 = torch.sigmoid(pred_mask_s2_3).to(dtype=torch.float32) # [N, K]
feats_iou = torch.cat(
[feats_seg_global, feats_seg, pred_mask_s2], dim=-1
) # [N, K, 512+3+3+3+512]
feats_iou = self.iou_mlp(feats_iou) # [N, K, 512]
feats_iou = torch.max(feats_iou, dim=0).values # [K, 512]
pred_iou = self.iou_mlp_out(feats_iou) # [K, 3]
pred_iou = torch.sigmoid(pred_iou).to(dtype=torch.float32) # [K, 3]
mask_1 = mask_1.transpose(0, 1) # [K, N]
mask_2 = mask_2.transpose(0, 1) # [K, N]
mask_3 = mask_3.transpose(0, 1) # [K, N]
return mask_1, mask_2, mask_3, pred_iou
def normalize_pc(pc):
"""
pc: (N, 3)
"""
max_, min_ = np.max(pc, axis=0), np.min(pc, axis=0)
center = (max_ + min_) / 2
scale = (max_ - min_) / 2
scale = np.max(np.abs(scale))
pc = (pc - center) / (scale + 1e-10)
return pc
@torch.no_grad()
def get_feat(model, points, normals):
data_dict = {
"coord": points,
"normal": normals,
"color": np.ones_like(points),
"batch": np.zeros(points.shape[0], dtype=np.int64),
}
data_dict = model.transform(data_dict)
for k in data_dict:
if isinstance(data_dict[k], torch.Tensor):
data_dict[k] = data_dict[k].cuda()
point = model.sonata(data_dict)
while "pooling_parent" in point.keys():
assert "pooling_inverse" in point.keys()
parent = point.pop("pooling_parent")
inverse = point.pop("pooling_inverse")
parent.feat = torch.cat([parent.feat, point.feat[inverse]], dim=-1)
point = parent
feat = point.feat # [M, 1232]
feat = model.mlp(feat) # [M, 512]
feat = feat[point.inverse] # [N, 512]
feats = feat
return feats
@torch.no_grad()
def get_mask(model, feats, points, point_prompt, iter=1):
"""
feats: [N, 512]
points: [N, 3]
point_prompt: [K, 3]
"""
point_num = points.shape[0]
prompt_num = point_prompt.shape[0]
feats = feats.unsqueeze(1) # [N, 1, 512]
feats = feats.repeat(1, prompt_num, 1).cuda() # [N, K, 512]
points = torch.from_numpy(points).float().cuda().unsqueeze(1) # [N, 1, 3]
points = points.repeat(1, prompt_num, 1) # [N, K, 3]
prompt_coord = (
torch.from_numpy(point_prompt).float().cuda().unsqueeze(0)
) # [1, K, 3]
prompt_coord = prompt_coord.repeat(point_num, 1, 1) # [N, K, 3]
feats = feats.transpose(0, 1) # [K, N, 512]
points = points.transpose(0, 1) # [K, N, 3]
prompt_coord = prompt_coord.transpose(0, 1) # [K, N, 3]
mask_1, mask_2, mask_3, pred_iou = model(feats, points, prompt_coord, iter)
mask_1 = mask_1.transpose(0, 1) # [N, K]
mask_2 = mask_2.transpose(0, 1) # [N, K]
mask_3 = mask_3.transpose(0, 1) # [N, K]
mask_1 = mask_1.detach().cpu().numpy() > 0.5
mask_2 = mask_2.detach().cpu().numpy() > 0.5
mask_3 = mask_3.detach().cpu().numpy() > 0.5
org_iou = pred_iou.detach().cpu().numpy() # [K, 3]
return mask_1, mask_2, mask_3, org_iou
def cal_iou(m1, m2):
return np.sum(np.logical_and(m1, m2)) / np.sum(np.logical_or(m1, m2))
def cal_single_iou(m1, m2):
return np.sum(np.logical_and(m1, m2)) / np.sum(m1)
def iou_3d(box1, box2, signle=None):
"""
计算两个三维边界框的交并比 (IoU)
参数:
box1 (list): 第一个边界框的坐标 [x1_min, y1_min, z1_min, x1_max, y1_max, z1_max]
box2 (list): 第二个边界框的坐标 [x2_min, y2_min, z2_min, x2_max, y2_max, z2_max]
返回:
float: 交并比 (IoU) 值
"""
# 计算交集的坐标
intersection_xmin = max(box1[0], box2[0])
intersection_ymin = max(box1[1], box2[1])
intersection_zmin = max(box1[2], box2[2])
intersection_xmax = min(box1[3], box2[3])
intersection_ymax = min(box1[4], box2[4])
intersection_zmax = min(box1[5], box2[5])
# 判断是否有交集
if (
intersection_xmin >= intersection_xmax
or intersection_ymin >= intersection_ymax
or intersection_zmin >= intersection_zmax
):
return 0.0 # 无交集
# 计算交集的体积
intersection_volume = (
(intersection_xmax - intersection_xmin)
* (intersection_ymax - intersection_ymin)
* (intersection_zmax - intersection_zmin)
)
# 计算两个盒子的体积
box1_volume = (box1[3] - box1[0]) * (box1[4] - box1[1]) * (box1[5] - box1[2])
box2_volume = (box2[3] - box2[0]) * (box2[4] - box2[1]) * (box2[5] - box2[2])
if signle is None:
# 计算并集的体积
union_volume = box1_volume + box2_volume - intersection_volume
elif signle == "1":
union_volume = box1_volume
elif signle == "2":
union_volume = box2_volume
else:
raise ValueError("signle must be None or 1 or 2")
# 计算 IoU
iou = intersection_volume / union_volume if union_volume > 0 else 0.0
return iou
def cal_point_bbox_iou(p1, p2, signle=None):
min_p1 = np.min(p1, axis=0)
max_p1 = np.max(p1, axis=0)
min_p2 = np.min(p2, axis=0)
max_p2 = np.max(p2, axis=0)
box1 = [min_p1[0], min_p1[1], min_p1[2], max_p1[0], max_p1[1], max_p1[2]]
box2 = [min_p2[0], min_p2[1], min_p2[2], max_p2[0], max_p2[1], max_p2[2]]
return iou_3d(box1, box2, signle)
def cal_bbox_iou(points, m1, m2):
p1 = points[m1]
p2 = points[m2]
return cal_point_bbox_iou(p1, p2)
def clean_mesh(mesh):
"""
mesh: trimesh.Trimesh
"""
# 1. 合并接近的顶点
mesh.merge_vertices()
# 2. 删除重复的顶点
# 3. 删除重复的面片
mesh.process(True)
return mesh
def remove_outliers_iqr(data, factor=1.5):
"""
基于 IQR 去除离群值
:param data: 输入的列表或 NumPy 数组
:param factor: IQR 的倍数(默认 1.5)
:return: 去除离群值后的列表
"""
data = np.array(data, dtype=np.float32)
q1 = np.percentile(data, 25) # 第一四分位数
q3 = np.percentile(data, 75) # 第三四分位数
iqr = q3 - q1 # 四分位距
lower_bound = q1 - factor * iqr
upper_bound = q3 + factor * iqr
return data[(data >= lower_bound) & (data <= upper_bound)].tolist()
def better_aabb(points):
x = points[:, 0]
y = points[:, 1]
z = points[:, 2]
x = remove_outliers_iqr(x)
y = remove_outliers_iqr(y)
z = remove_outliers_iqr(z)
min_xyz = np.array([np.min(x), np.min(y), np.min(z)])
max_xyz = np.array([np.max(x), np.max(y), np.max(z)])
return [min_xyz, max_xyz]
def fix_label(face_ids, adjacent_faces, use_aabb=False, mesh=None, show_info=False):
if use_aabb:
def _cal_aabb(face_ids, i, _points_org):
_part_mask = face_ids == i
_faces = mesh.faces[_part_mask]
_faces = np.reshape(_faces, (-1))
_points = mesh.vertices[_faces]
min_xyz, max_xyz = better_aabb(_points)
_part_mask = (
(_points_org[:, 0] >= min_xyz[0])
& (_points_org[:, 0] <= max_xyz[0])
& (_points_org[:, 1] >= min_xyz[1])
& (_points_org[:, 1] <= max_xyz[1])
& (_points_org[:, 2] >= min_xyz[2])
& (_points_org[:, 2] <= max_xyz[2])
)
_part_mask = np.reshape(_part_mask, (-1, 3))
_part_mask = np.all(_part_mask, axis=1)
return i, [min_xyz, max_xyz], _part_mask
with Timer("计算aabb"):
aabb = {}
unique_ids = np.unique(face_ids)
# print(max(unique_ids))
aabb_face_mask = {}
_faces = mesh.faces
_vertices = mesh.vertices
_faces = np.reshape(_faces, (-1))
_points = _vertices[_faces]
with ThreadPoolExecutor(max_workers=20) as executor:
futures = []
for i in unique_ids:
if i < 0:
continue
futures.append(executor.submit(_cal_aabb, face_ids, i, _points))
for future in futures:
res = future.result()
aabb[res[0]] = res[1]
aabb_face_mask[res[0]] = res[2]
# _faces = mesh.faces
# _vertices = mesh.vertices
# _faces = np.reshape(_faces, (-1))
# _points = _vertices[_faces]
# aabb_face_mask = cal_aabb_mask(_points, face_ids)
with Timer("合并mesh"):
loop_cnt = 1
changed = True
progress = tqdm(disable=not show_info)
no_mask_ids = np.where(face_ids < 0)[0].tolist()
faces_max = adjacent_faces.shape[0]
while changed and loop_cnt <= 50:
changed = False
# 获取无色面片
new_no_mask_ids = []
for i in no_mask_ids:
# if face_ids[i] < 0:
# 找邻居
if not (0 <= i < faces_max):
continue
_adj_faces = adjacent_faces[i]
_adj_ids = []
for j in _adj_faces:
if j == -1:
break
if face_ids[j] >= 0:
_tar_id = face_ids[j]
if use_aabb:
_mask = aabb_face_mask[_tar_id]
if _mask[i]:
_adj_ids.append(_tar_id)
else:
_adj_ids.append(_tar_id)
if len(_adj_ids) == 0:
new_no_mask_ids.append(i)
continue
_max_id = np.argmax(np.bincount(_adj_ids))
face_ids[i] = _max_id
changed = True
no_mask_ids = new_no_mask_ids
# print(loop_cnt)
progress.update(1)
# progress.set_description(f"合并mesh循环:{loop_cnt} {np.sum(face_ids < 0)}")
loop_cnt += 1
return face_ids
def save_mesh(save_path, mesh, face_ids, color_map):
face_colors = np.zeros((len(mesh.faces), 3), dtype=np.uint8)
for i in tqdm(range(len(mesh.faces)), disable=True):
_max_id = face_ids[i]
if _max_id == -2:
continue
face_colors[i, :3] = color_map[_max_id]
mesh_save = trimesh.Trimesh(vertices=mesh.vertices, faces=mesh.faces)
mesh_save.visual.face_colors = face_colors
mesh_save.export(save_path)
mesh_save.export(save_path.replace(".glb", ".ply"))
# print('保存mesh完成')
scene_mesh = trimesh.Scene()
scene_mesh.add_geometry(mesh_save)
unique_ids = np.unique(face_ids)
aabb = []
for i in unique_ids:
if i == -1 or i == -2:
continue
_part_mask = face_ids == i
_faces = mesh.faces[_part_mask]
_faces = np.reshape(_faces, (-1))
_points = mesh.vertices[_faces]
min_xyz, max_xyz = better_aabb(_points)
center = (min_xyz + max_xyz) / 2
size = max_xyz - min_xyz
box = trimesh.path.creation.box_outline()
box.vertices *= size
box.vertices += center
box_color = np.array([[color_map[i][0], color_map[i][1], color_map[i][2], 255]])
box_color = np.repeat(box_color, len(box.entities), axis=0).astype(np.uint8)
box.colors = box_color
scene_mesh.add_geometry(box)
min_xyz = np.min(_points, axis=0)
max_xyz = np.max(_points, axis=0)
aabb.append([min_xyz, max_xyz])
scene_mesh.export(save_path.replace(".glb", "_aabb.glb"))
aabb = np.array(aabb)
np.save(save_path.replace(".glb", "_aabb.npy"), aabb)
np.save(save_path.replace(".glb", "_face_ids.npy"), face_ids)
def get_aabb_from_face_ids(mesh, face_ids):
unique_ids = np.unique(face_ids)
aabb = []
for i in unique_ids:
if i == -1 or i == -2:
continue
_part_mask = face_ids == i
_faces = mesh.faces[_part_mask]
_faces = np.reshape(_faces, (-1))
_points = mesh.vertices[_faces]
min_xyz = np.min(_points, axis=0)
max_xyz = np.max(_points, axis=0)
aabb.append([min_xyz, max_xyz])
return np.array(aabb)
def calculate_face_areas(mesh):
"""
计算每个三角形面片的面积
:param mesh: trimesh.Trimesh 对象
:return: 面片面积数组 (n_faces,)
"""
return mesh.area_faces
# # 提取顶点和面片索引
# vertices = mesh.vertices
# faces = mesh.faces
# # 获取所有三个顶点的坐标
# v0 = vertices[faces[:, 0]]
# v1 = vertices[faces[:, 1]]
# v2 = vertices[faces[:, 2]]
# # 计算两个边向量
# edge1 = v1 - v0
# edge2 = v2 - v0
# # 计算叉积的模长(向量面积的两倍)
# cross_product = np.cross(edge1, edge2)
# areas = 0.5 * np.linalg.norm(cross_product, axis=1)
# return areas
def get_connected_region(face_ids, adjacent_faces, return_face_part_ids=False):
vis = [False] * len(face_ids)
parts = []
face_part_ids = np.ones_like(face_ids) * -1
for i in range(len(face_ids)):
if vis[i]:
continue
_part = []
_queue = [i]
while len(_queue) > 0:
_cur_face = _queue.pop(0)
if vis[_cur_face]:
continue
vis[_cur_face] = True
_part.append(_cur_face)
face_part_ids[_cur_face] = len(parts)
if not (0 <= _cur_face < adjacent_faces.shape[0]):
continue
_cur_face_id = face_ids[_cur_face]
_adj_faces = adjacent_faces[_cur_face]
for j in _adj_faces:
if j == -1:
break
if not vis[j] and face_ids[j] == _cur_face_id:
_queue.append(j)
parts.append(_part)
if return_face_part_ids:
return parts, face_part_ids
else:
return parts
def aabb_distance(box1, box2):
"""
计算两个轴对齐包围盒(AABB)之间的最近距离。
:param box1: 元组 (min_x, min_y, min_z, max_x, max_y, max_z)
:param box2: 元组 (min_x, min_y, min_z, max_x, max_y, max_z)
:return: 最近距离(浮点数)
"""
# 解包坐标
min1, max1 = box1
min2, max2 = box2
# 计算各轴上的分离距离
dx = max(0, max2[0] - min1[0], max1[0] - min2[0]) # x轴分离距离
dy = max(0, max2[1] - min1[1], max1[1] - min2[1]) # y轴分离距离
dz = max(0, max2[2] - min1[2], max1[2] - min2[2]) # z轴分离距离
# 如果所有轴都重叠,则距离为0
if dx == 0 and dy == 0 and dz == 0:
return 0.0
# 计算欧几里得距离
return np.sqrt(dx**2 + dy**2 + dz**2)
def aabb_volume(aabb):
"""
计算轴对齐包围盒(AABB)的体积。
:param aabb: 元组 (min_x, min_y, min_z, max_x, max_y, max_z)
:return: 体积(浮点数)
"""
# 解包坐标
min_xyz, max_xyz = aabb
# 计算体积
dx = max_xyz[0] - min_xyz[0]
dy = max_xyz[1] - min_xyz[1]
dz = max_xyz[2] - min_xyz[2]
return dx * dy * dz
def find_neighbor_part(parts, adjacent_faces, parts_aabb=None, parts_ids=None):
face2part = {}
for i, part in enumerate(parts):
for face in part:
face2part[face] = i
neighbor_parts = []
for i, part in enumerate(parts):
neighbor_part = set()
for face in part:
if not (0 <= face < adjacent_faces.shape[0]):
continue
for adj_face in adjacent_faces[face]:
if adj_face == -1:
break
if adj_face not in face2part:
continue
if face2part[adj_face] == i:
continue
if parts_ids is not None and parts_ids[face2part[adj_face]] in [-1, -2]:
continue
neighbor_part.add(face2part[adj_face])
neighbor_part = list(neighbor_part)
if parts_aabb is not None and parts_ids is not None and (parts_ids[i] == -1 or parts_ids[i] == -2) and len(neighbor_part) == 0:
min_dis = np.inf
min_idx = -1
for j, _part in tqdm(enumerate(parts)):
if j == i:
continue
if parts_ids[j] == -1 or parts_ids[j] == -2:
continue
aabb_1 = parts_aabb[i]
aabb_2 = parts_aabb[j]
dis = aabb_distance(aabb_1, aabb_2)
if dis < min_dis:
min_dis = dis
min_idx = j
elif dis == min_dis:
if aabb_volume(parts_aabb[j]) < aabb_volume(parts_aabb[min_idx]):
min_idx = j
neighbor_part = [min_idx]
neighbor_parts.append(neighbor_part)
return neighbor_parts
def do_post_process(face_areas, parts, adjacent_faces, face_ids, threshold=0.95, show_info=False):
# # 获取邻接面片
# mesh_save = mesh.copy()
# face_adjacency = mesh.face_adjacency
# adjacent_faces = {}
# for face1, face2 in face_adjacency:
# if face1 not in adjacent_faces:
# adjacent_faces[face1] = []
# if face2 not in adjacent_faces:
# adjacent_faces[face2] = []
# adjacent_faces[face1].append(face2)
# adjacent_faces[face2].append(face1)
# parts = get_connected_region(face_ids, adjacent_faces)
unique_ids = np.unique(face_ids)
if show_info:
print(f"连通区域数量:{len(parts)}")
print(f"ID数量:{len(unique_ids)}")
# face_areas = calculate_face_areas(mesh)
total_area = np.sum(face_areas)
if show_info:
print(f"总面积:{total_area}")
part_areas = []
for i, part in enumerate(parts):
part_area = np.sum(face_areas[part])
part_areas.append(float(part_area / total_area))
sorted_parts = sorted(zip(part_areas, parts), key=lambda x: x[0], reverse=True)
parts = [x[1] for x in sorted_parts]
part_areas = [x[0] for x in sorted_parts]
integral_part_areas = np.cumsum(part_areas)
neighbor_parts = find_neighbor_part(parts, adjacent_faces)
new_face_ids = face_ids.copy()
for i, part in enumerate(parts):
if integral_part_areas[i] > threshold and part_areas[i] < 0.01:
if len(neighbor_parts[i]) > 0:
max_area = 0
max_part = -1
for j in neighbor_parts[i]:
if integral_part_areas[j] > threshold:
continue
if part_areas[j] > max_area:
max_area = part_areas[j]
max_part = j
if max_part != -1:
if show_info:
print(f"合并mesh:{i} {max_part}")
parts[max_part].extend(part)
parts[i] = []
target_face_id = face_ids[parts[max_part][0]]
for face in part:
new_face_ids[face] = target_face_id
return new_face_ids
def do_no_mask_process(parts, face_ids):
# # 获取邻接面片
# mesh_save = mesh.copy()
# face_adjacency = mesh.face_adjacency
# adjacent_faces = {}
# for face1, face2 in face_adjacency:
# if face1 not in adjacent_faces:
# adjacent_faces[face1] = []
# if face2 not in adjacent_faces:
# adjacent_faces[face2] = []
# adjacent_faces[face1].append(face2)
# adjacent_faces[face2].append(face1)
# parts = get_connected_region(face_ids, adjacent_faces)
unique_ids = np.unique(face_ids)
max_id = np.max(unique_ids)
if -1 or -2 in unique_ids:
new_face_ids = face_ids.copy()
for i, part in enumerate(parts):
if face_ids[part[0]] == -1 or face_ids[part[0]] == -2:
for face in part:
new_face_ids[face] = max_id + 1
max_id += 1
return new_face_ids
else:
return face_ids
def union_aabb(aabb1, aabb2):
min_xyz1 = aabb1[0]
max_xyz1 = aabb1[1]
min_xyz2 = aabb2[0]
max_xyz2 = aabb2[1]
min_xyz = np.minimum(min_xyz1, min_xyz2)
max_xyz = np.maximum(max_xyz1, max_xyz2)
return [min_xyz, max_xyz]
def aabb_increase(aabb1, aabb2):
min_xyz_before = aabb1[0]
max_xyz_before = aabb1[1]
min_xyz_after, max_xyz_after = union_aabb(aabb1, aabb2)
min_xyz_increase = np.abs(min_xyz_after - min_xyz_before) / np.abs(min_xyz_before)
max_xyz_increase = np.abs(max_xyz_after - max_xyz_before) / np.abs(max_xyz_before)
return min_xyz_increase, max_xyz_increase
def sort_multi_list(multi_list, key=lambda x: x[0], reverse=False):
'''
multi_list: [list1, list2, list3, list4, ...], len(list1)=N, len(list2)=N, len(list3)=N, ...
key: 排序函数,默认按第一个元素排序
reverse: 排序顺序,默认降序
return:
[list1, list2, list3, list4, ...]: 按同一个顺序排序后的多个list
'''
sorted_list = sorted(zip(*multi_list), key=key, reverse=reverse)
return zip(*sorted_list)
class Timer:
STATE = True
def __init__(self, name):
self.name = name
def __enter__(self):
if not Timer.STATE:
return
self.start_time = time.time()
return self # 可以返回 self 以便在 with 块内访问
def __exit__(self, exc_type, exc_val, exc_tb):
if not Timer.STATE:
return
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
print(f">>>>>>代码{self.name} 运行时间: {self.elapsed_time:.4f} 秒")
###################### NUMBA 加速 ######################
@njit
def build_adjacent_faces_numba(face_adjacency):
"""
使用 Numba 加速构建邻接面片数组。
:param face_adjacency: (N, 2) numpy 数组,包含邻接面片对。
:return:
- adj_list: 一维数组,存储所有邻接面片。
- offsets: 一维数组,记录每个面片的邻接起始位置。
"""
n_faces = np.max(face_adjacency) + 1 # 总面片数
n_edges = face_adjacency.shape[0] # 总邻接边数
# 第一步:统计每个面片的邻接数量(度数)
degrees = np.zeros(n_faces, dtype=np.int32)
for i in range(n_edges):
f1, f2 = face_adjacency[i]
degrees[f1] += 1
degrees[f2] += 1
max_degree = np.max(degrees) # 最大度数
adjacent_faces = np.ones((n_faces, max_degree), dtype=np.int32) * -1 # 邻接面片数组
adjacent_faces_count = np.zeros(n_faces, dtype=np.int32) # 邻接面片计数器
for i in range(n_edges):
f1, f2 = face_adjacency[i]
adjacent_faces[f1, adjacent_faces_count[f1]] = f2
adjacent_faces_count[f1] += 1
adjacent_faces[f2, adjacent_faces_count[f2]] = f1
adjacent_faces_count[f2] += 1
return adjacent_faces
###################### NUMBA 加速 ######################
def mesh_sam(
model,
mesh,
save_path,
point_num=100000,
prompt_num=400,
save_mid_res=False,
show_info=False,
post_process=False,
threshold=0.95,
clean_mesh_flag=True,
seed=42,
prompt_bs=32,
):
with Timer("加载mesh"):
model, model_parallel = model
if clean_mesh_flag:
mesh = clean_mesh(mesh)
mesh = trimesh.Trimesh(vertices=mesh.vertices, faces=mesh.faces)
if show_info:
print(f"点数:{mesh.vertices.shape[0]} 面片数:{mesh.faces.shape[0]}")
point_num = 100000
prompt_num = 400
with Timer("获取邻接面片"):
face_adjacency = mesh.face_adjacency
with Timer("处理邻接面片"):
adjacent_faces = build_adjacent_faces_numba(face_adjacency)
with Timer("采样点云"):
_points, face_idx = trimesh.sample.sample_surface(mesh, point_num, seed=seed)
_points_org = _points.copy()
_points = normalize_pc(_points)
normals = mesh.face_normals[face_idx]
if show_info:
print(f"点数:{point_num} 面片数:{mesh.faces.shape[0]}")
with Timer("获取特征"):
_feats = get_feat(model, _points, normals)
if show_info:
print("预处理特征")
if save_mid_res:
feat_save = _feats.float().detach().cpu().numpy()
data_scaled = feat_save / np.linalg.norm(feat_save, axis=-1, keepdims=True)
pca = PCA(n_components=3)
data_reduced = pca.fit_transform(data_scaled)
data_reduced = (data_reduced - data_reduced.min()) / (
data_reduced.max() - data_reduced.min()
)
_colors_pca = (data_reduced * 255).astype(np.uint8)
pc_save = trimesh.points.PointCloud(_points, colors=_colors_pca)
pc_save.export(os.path.join(save_path, "point_pca.glb"))
pc_save.export(os.path.join(save_path, "point_pca.ply"))
if show_info:
print("PCA获取特征颜色")
with Timer("FPS采样提示点"):
fps_idx = fpsample.fps_sampling(_points, prompt_num)
_point_prompts = _points[fps_idx]
if save_mid_res:
trimesh.points.PointCloud(_point_prompts, colors=_colors_pca[fps_idx]).export(
os.path.join(save_path, "point_prompts_pca.glb")
)
trimesh.points.PointCloud(_point_prompts, colors=_colors_pca[fps_idx]).export(
os.path.join(save_path, "point_prompts_pca.ply")
)
if show_info:
print("采样完成")
with Timer("推理"):
bs = prompt_bs
step_num = prompt_num // bs + 1
mask_res = []
iou_res = []
for i in tqdm(range(step_num), disable=not show_info):
cur_propmt = _point_prompts[bs * i : bs * (i + 1)]
pred_mask_1, pred_mask_2, pred_mask_3, pred_iou = get_mask(
model_parallel, _feats, _points, cur_propmt
)
pred_mask = np.stack(
[pred_mask_1, pred_mask_2, pred_mask_3], axis=-1
) # [N, K, 3]
max_idx = np.argmax(pred_iou, axis=-1) # [K]
for j in range(max_idx.shape[0]):
mask_res.append(pred_mask[:, j, max_idx[j]])
iou_res.append(pred_iou[j, max_idx[j]])
mask_res = np.stack(mask_res, axis=-1) # [N, K]
if show_info:
print("prmopt 推理完成")
with Timer("根据IOU排序"):
iou_res = np.array(iou_res).tolist()
mask_iou = [[mask_res[:, i], iou_res[i]] for i in range(prompt_num)]
mask_iou_sorted = sorted(mask_iou, key=lambda x: x[1], reverse=True)
mask_sorted = [mask_iou_sorted[i][0] for i in range(prompt_num)]
iou_sorted = [mask_iou_sorted[i][1] for i in range(prompt_num)]
with Timer("NMS"):
clusters = defaultdict(list)
with ThreadPoolExecutor(max_workers=20) as executor:
for i in tqdm(range(prompt_num), desc="NMS", disable=not show_info):
_mask = mask_sorted[i]
futures = []
for j in clusters.keys():
futures.append(executor.submit(cal_iou, _mask, mask_sorted[j]))
for j, future in zip(clusters.keys(), futures):
if future.result() > 0.9:
clusters[j].append(i)
break
else:
clusters[i].append(i)
if show_info:
print(f"NMS完成,mask数量:{len(clusters)}")
if save_mid_res:
part_mask_save_path = os.path.join(save_path, "part_mask")
if os.path.exists(part_mask_save_path):
shutil.rmtree(part_mask_save_path)
os.makedirs(part_mask_save_path, exist_ok=True)
for i in tqdm(clusters.keys(), desc="保存mask", disable=not show_info):
cluster_num = len(clusters[i])
cluster_iou = iou_sorted[i]
cluster_area = np.sum(mask_sorted[i])
if cluster_num <= 2:
continue
mask_save = mask_sorted[i]
mask_save = np.expand_dims(mask_save, axis=-1)
mask_save = np.repeat(mask_save, 3, axis=-1)
mask_save = (mask_save * 255).astype(np.uint8)
point_save = trimesh.points.PointCloud(_points, colors=mask_save)
point_save.export(
os.path.join(
part_mask_save_path,
f"mask_{i}_iou_{cluster_iou:.5f}_area_{cluster_area:.5f}_num_{cluster_num}.glb",
)
)
# 过滤只有一个mask的cluster
with Timer("过滤只有一个mask的cluster"):
filtered_clusters = []
other_clusters = []
for i in clusters.keys():
if len(clusters[i]) > 2:
filtered_clusters.append(i)
else:
other_clusters.append(i)
if show_info:
print(
f"过滤前:{len(clusters)} 个cluster,"
f"过滤后:{len(filtered_clusters)} 个cluster"
)
# 再次合并
with Timer("再次合并"):
filtered_clusters_num = len(filtered_clusters)
cluster2 = {}
is_union = [False] * filtered_clusters_num
for i in range(filtered_clusters_num):
if is_union[i]:
continue
cur_cluster = filtered_clusters[i]
cluster2[cur_cluster] = [cur_cluster]
for j in range(i + 1, filtered_clusters_num):
if is_union[j]:
continue
tar_cluster = filtered_clusters[j]
if (
cal_bbox_iou(
_points, mask_sorted[tar_cluster], mask_sorted[cur_cluster]
)
> 0.5
):
cluster2[cur_cluster].append(tar_cluster)
is_union[j] = True
if show_info:
print(f"再次合并,合并数量:{len(cluster2.keys())}")
with Timer("计算没有mask的点"):
no_mask = np.ones(point_num)
for i in cluster2:
part_mask = mask_sorted[i]
no_mask[part_mask] = 0
if show_info:
print(
f"{np.sum(no_mask == 1)} 个点没有mask,"
f" 占比:{np.sum(no_mask == 1) / point_num:.4f}"
)
with Timer("修补遗漏mask"):
# 查询漏掉的mask
for i in tqdm(range(len(mask_sorted)), desc="漏掉mask", disable=not show_info):
if i in cluster2:
continue
part_mask = mask_sorted[i]
_iou = cal_single_iou(part_mask, no_mask)
if _iou > 0.7:
cluster2[i] = [i]
no_mask[part_mask] = 0
if save_mid_res:
mask_save = mask_sorted[i]
mask_save = np.expand_dims(mask_save, axis=-1)
mask_save = np.repeat(mask_save, 3, axis=-1)
mask_save = (mask_save * 255).astype(np.uint8)
point_save = trimesh.points.PointCloud(_points, colors=mask_save)
cluster_iou = iou_sorted[i]
cluster_area = int(np.sum(mask_sorted[i]))
cluster_num = 1
point_save.export(
os.path.join(
part_mask_save_path,
f"mask_{i}_iou_{cluster_iou:.5f}_area_{cluster_area:.5f}_num_{cluster_num}.glb",
)
)
if show_info:
print(f"修补遗漏mask:{len(cluster2.keys())}")
with Timer("计算点云最终mask"):
final_mask = list(cluster2.keys())
final_mask_area = [int(np.sum(mask_sorted[i])) for i in final_mask]
final_mask_area = [
[final_mask[i], final_mask_area[i]] for i in range(len(final_mask))
]
final_mask_area_sorted = sorted(final_mask_area, key=lambda x: x[1], reverse=True)
final_mask_sorted = [
final_mask_area_sorted[i][0] for i in range(len(final_mask_area))
]
final_mask_area_sorted = [
final_mask_area_sorted[i][1] for i in range(len(final_mask_area))
]
if show_info:
print(f"最终mask数量:{len(final_mask_sorted)}")
with Timer("点云上色"):
# 生成color map
color_map = {}
for i in final_mask_sorted:
part_color = np.random.rand(3) * 255
color_map[i] = part_color
# print(color_map)
result_mask = -np.ones(point_num, dtype=np.int64)
for i in final_mask_sorted:
part_mask = mask_sorted[i]
result_mask[part_mask] = i
if save_mid_res:
# 保存点云结果
result_colors = np.zeros_like(_colors_pca)
for i in final_mask_sorted:
part_color = color_map[i]
part_mask = mask_sorted[i]
result_colors[part_mask, :3] = part_color
trimesh.points.PointCloud(_points, colors=result_colors).export(
os.path.join(save_path, "auto_mask_cluster.glb")
)
trimesh.points.PointCloud(_points, colors=result_colors).export(
os.path.join(save_path, "auto_mask_cluster.ply")
)
if show_info:
print("保存点云完成")
with Timer("投影Mesh并统计label"):
# 保存mesh结果
face_seg_res = {}
for i in final_mask_sorted:
_part_mask = result_mask == i
_face_idx = face_idx[_part_mask]
for k in _face_idx:
if k not in face_seg_res:
face_seg_res[k] = []
face_seg_res[k].append(i)
_part_mask = result_mask == -1
_face_idx = face_idx[_part_mask]
for k in _face_idx:
if k not in face_seg_res:
face_seg_res[k] = []
face_seg_res[k].append(-1)
face_ids = -np.ones(len(mesh.faces), dtype=np.int64) * 2
for i in tqdm(face_seg_res, leave=False, disable=True):
_seg_ids = np.array(face_seg_res[i])
# 获取最多的seg_id
_max_id = np.argmax(np.bincount(_seg_ids + 2)) - 2
face_ids[i] = _max_id
face_ids_org = face_ids.copy()
if show_info:
print("生成face_ids完成")
with Timer("第一次修复face_ids"):
face_ids += 1
face_ids = fix_label(face_ids, adjacent_faces, mesh=mesh, show_info=show_info)
face_ids -= 1
if show_info:
print("修复face_ids完成")
color_map[-1] = np.array([255, 0, 0], dtype=np.uint8)
if save_mid_res:
save_mesh(
os.path.join(save_path, "auto_mask_mesh.glb"), mesh, face_ids, color_map
)
save_mesh(
os.path.join(save_path, "auto_mask_mesh_org.glb"),
mesh,
face_ids_org,
color_map,
)
if show_info:
print("保存mesh结果完成")
with Timer("计算连通区域"):
face_areas = calculate_face_areas(mesh)
mesh_total_area = np.sum(face_areas)
parts = get_connected_region(face_ids, adjacent_faces)
connected_parts, _face_connected_parts_ids = get_connected_region(np.ones_like(face_ids), adjacent_faces, return_face_part_ids=True)
if show_info:
print(f"共{len(parts)}个mesh")
with Timer("排序连通区域"):
parts_cp_idx = []
for x in parts:
_face_idx = x[0]
parts_cp_idx.append(_face_connected_parts_ids[_face_idx])
parts_cp_idx = np.array(parts_cp_idx)
parts_areas = [float(np.sum(face_areas[x])) for x in parts]
connected_parts_areas = [float(np.sum(face_areas[x])) for x in connected_parts]
parts_cp_areas = [connected_parts_areas[x] for x in parts_cp_idx]
parts_sorted, parts_areas_sorted, parts_cp_areas_sorted = sort_multi_list([parts, parts_areas, parts_cp_areas], key=lambda x: x[1], reverse=True)
with Timer("去除面积过小的区域"):
filtered_parts = []
other_parts = []
for i in range(len(parts_sorted)):
parts = parts_sorted[i]
area = parts_areas_sorted[i]
cp_area = parts_cp_areas_sorted[i]
if area / (cp_area+1e-7) > 0.001:
filtered_parts.append(i)
else:
other_parts.append(i)
if show_info:
print(f"保留{len(filtered_parts)}个mesh, 其他{len(other_parts)}个mesh")
with Timer("去除面积过小区域的label"):
face_ids_2 = face_ids.copy()
part_num = len(cluster2.keys())
for j in other_parts:
parts = parts_sorted[j]
for i in parts:
face_ids_2[i] = -1
with Timer("第二次修复face_ids"):
face_ids_3 = face_ids_2.copy()
face_ids_3 = fix_label(face_ids_3, adjacent_faces, mesh=mesh, show_info=show_info)
if save_mid_res:
save_mesh(
os.path.join(save_path, "auto_mask_mesh_filtered_2.glb"),
mesh,
face_ids_3,
color_map,
)
if show_info:
print("保存mesh结果完成")
with Timer("第二次计算连通区域"):
parts_2 = get_connected_region(face_ids_3, adjacent_faces)
parts_areas_2 = [float(np.sum(face_areas[x])) for x in parts_2]
parts_ids_2 = [face_ids_3[x[0]] for x in parts_2]
with Timer("添加过大的缺失part"):
color_map_2 = copy.deepcopy(color_map)
max_id = np.max(parts_ids_2)
for i in range(len(parts_2)):
_parts = parts_2[i]
_area = parts_areas_2[i]
_parts_id = face_ids_3[_parts[0]]
if _area / mesh_total_area > 0.001:
if _parts_id == -1 or _parts_id == -2:
parts_ids_2[i] = max_id + 1
max_id += 1
color_map_2[max_id] = np.random.rand(3) * 255
if show_info:
print(f"新增part {max_id}")
# else:
# parts_ids_2[i] = -1
with Timer("赋值新的face_ids"):
face_ids_4 = face_ids_3.copy()
for i in range(len(parts_2)):
_parts = parts_2[i]
_parts_id = parts_ids_2[i]
for j in _parts:
face_ids_4[j] = _parts_id
with Timer("计算part和label的aabb"):
ids_aabb = {}
unique_ids = np.unique(face_ids_4)
for i in unique_ids:
if i < 0:
continue
_part_mask = face_ids_4 == i
_faces = mesh.faces[_part_mask]
_faces = np.reshape(_faces, (-1))
_points = mesh.vertices[_faces]
min_xyz = np.min(_points, axis=0)
max_xyz = np.max(_points, axis=0)
ids_aabb[i] = [min_xyz, max_xyz]
parts_2_aabb = []
for i in range(len(parts_2)):
_parts = parts_2[i]
_faces = mesh.faces[_parts]
_faces = np.reshape(_faces, (-1))
_points = mesh.vertices[_faces]
min_xyz = np.min(_points, axis=0)
max_xyz = np.max(_points, axis=0)
parts_2_aabb.append([min_xyz, max_xyz])
with Timer("计算part的邻居"):
parts_2_neighbor = find_neighbor_part(parts_2, adjacent_faces, parts_2_aabb, parts_ids_2)
with Timer("合并无mask区域"):
for i in range(len(parts_2)):
_parts = parts_2[i]
_ids = parts_ids_2[i]
if _ids == -1 or _ids == -2:
_cur_aabb = parts_2_aabb[i]
_min_aabb_increase = 1e10
_min_id = -1
for j in parts_2_neighbor[i]:
if parts_ids_2[j] == -1 or parts_ids_2[j] == -2:
continue
_tar_id = parts_ids_2[j]
_tar_aabb = ids_aabb[_tar_id]
_min_increase, _max_increase = aabb_increase(_tar_aabb, _cur_aabb)
_increase = max(np.max(_min_increase), np.max(_max_increase))
if _min_aabb_increase > _increase:
_min_aabb_increase = _increase
_min_id = _tar_id
if _min_id >= 0:
parts_ids_2[i] = _min_id
with Timer("再次赋值新的face_ids"):
face_ids_4 = face_ids_3.copy()
for i in range(len(parts_2)):
_parts = parts_2[i]
_parts_id = parts_ids_2[i]
for j in _parts:
face_ids_4[j] = _parts_id
final_face_ids = face_ids_4
if save_mid_res:
save_mesh(
os.path.join(save_path, "auto_mask_mesh_final.glb"),
mesh,
face_ids_4,
color_map_2,
)
if post_process:
parts = get_connected_region(final_face_ids, adjacent_faces)
final_face_ids = do_no_mask_process(parts, final_face_ids)
face_ids_5 = do_post_process(face_areas, parts, adjacent_faces, face_ids_4, threshold, show_info=show_info)
if save_mid_res:
save_mesh(
os.path.join(save_path, "auto_mask_mesh_final_post.glb"),
mesh,
face_ids_5,
color_map_2,
)
final_face_ids = face_ids_5
with Timer("计算最后的aabb"):
aabb = get_aabb_from_face_ids(mesh, final_face_ids)
return aabb, final_face_ids, mesh
class AutoMask:
def __init__(
self,
ckpt_path=None,
point_num=100000,
prompt_num=400,
threshold=0.95,
post_process=True,
):
"""
ckpt_path: str, 模型路径
point_num: int, 采样点数量
prompt_num: int, 提示数量
threshold: float, 阈值
post_process: bool, 是否后处理
"""
self.model = P3SAM()
self.model.load_state_dict(ckpt_path)
self.model.eval()
self.model_parallel = torch.nn.DataParallel(self.model)
self.model.cuda()
self.model_parallel.cuda()
self.point_num = point_num
self.prompt_num = prompt_num
self.threshold = threshold
self.post_process = post_process
def predict_aabb(
self, mesh, point_num=None, prompt_num=None, threshold=None, post_process=None, save_path=None, save_mid_res=False, show_info=True, clean_mesh_flag=True, seed=42, is_parallel=True, prompt_bs=32
):
"""
Parameters:
mesh: trimesh.Trimesh, 输入网格
point_num: int, 采样点数量
prompt_num: int, 提示数量
threshold: float, 阈值
post_process: bool, 是否后处理
Returns:
aabb: np.ndarray, 包围盒
face_ids: np.ndarray, 面id
"""
point_num = point_num if point_num is not None else self.point_num
prompt_num = prompt_num if prompt_num is not None else self.prompt_num
threshold = threshold if threshold is not None else self.threshold
post_process = post_process if post_process is not None else self.post_process
return mesh_sam(
[self.model, self.model_parallel if is_parallel else self.model],
mesh,
save_path=save_path,
point_num=point_num,
prompt_num=prompt_num,
threshold=threshold,
post_process=post_process,
show_info=show_info,
save_mid_res=save_mid_res,
clean_mesh_flag=clean_mesh_flag,
seed=seed,
prompt_bs=prompt_bs,
)
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if __name__ == '__main__':
argparser = argparse.ArgumentParser()
argparser.add_argument('--ckpt_path', type=str, default=None, help='模型路径')
argparser.add_argument('--mesh_path', type=str, default='assets/1.glb', help='输入网格路径')
argparser.add_argument('--output_path', type=str, default='results/1', help='保存路径')
argparser.add_argument('--point_num', type=int, default=100000, help='采样点数量')
argparser.add_argument('--prompt_num', type=int, default=400, help='提示数量')
argparser.add_argument('--threshold', type=float, default=0.95, help='阈值')
argparser.add_argument('--post_process', type=int, default=0, help='是否后处理')
argparser.add_argument('--save_mid_res', type=int, default=1, help='是否保存中间结果')
argparser.add_argument('--show_info', type=int, default=1, help='是否显示信息')
argparser.add_argument('--show_time_info', type=int, default=1, help='是否显示时间信息')
argparser.add_argument('--seed', type=int, default=42, help='随机种子')
argparser.add_argument('--parallel', type=int, default=1, help='是否使用多卡')
argparser.add_argument('--prompt_bs', type=int, default=32, help='提示点推理时的batch size大小')
argparser.add_argument('--clean_mesh', type=int, default=1, help='是否清洗网格')
args = argparser.parse_args()
Timer.STATE = args.show_time_info
output_path = args.output_path
os.makedirs(output_path, exist_ok=True)
ckpt_path = args.ckpt_path
auto_mask = AutoMask(ckpt_path)
mesh_path = args.mesh_path
if os.path.isdir(mesh_path):
for file in os.listdir(mesh_path):
if not (file.endswith('.glb') or file.endswith('.obj') or file.endswith('.ply')):
continue
_mesh_path = os.path.join(mesh_path, file)
_output_path = os.path.join(output_path, file[:-4])
os.makedirs(_output_path, exist_ok=True)
mesh = trimesh.load(_mesh_path, force='mesh')
set_seed(args.seed)
aabb, face_ids, mesh = auto_mask.predict_aabb(mesh,
save_path=_output_path,
point_num=args.point_num,
prompt_num=args.prompt_num,
threshold=args.threshold,
post_process=args.post_process,
save_mid_res=args.save_mid_res,
show_info=args.show_info,
seed=args.seed,
is_parallel=args.parallel,
clean_mesh_flag=args.clean_mesh,)
else:
mesh = trimesh.load(mesh_path, force='mesh')
set_seed(args.seed)
aabb, face_ids, mesh = auto_mask.predict_aabb(mesh,
save_path=output_path,
point_num=args.point_num,
prompt_num=args.prompt_num,
threshold=args.threshold,
post_process=args.post_process,
save_mid_res=args.save_mid_res,
show_info=args.show_info,
seed=args.seed,
is_parallel=args.parallel,
clean_mesh_flag=args.clean_mesh,)
###############################################
## 可以通过以下代码保存返回的结果
## You can save the returned result by the following code
################# save result #################
# color_map = {}
# unique_ids = np.unique(face_ids)
# for i in unique_ids:
# if i == -1:
# continue
# part_color = np.random.rand(3) * 255
# color_map[i] = part_color
# face_colors = []
# for i in face_ids:
# if i == -1:
# face_colors.append([0, 0, 0])
# else:
# face_colors.append(color_map[i])
# face_colors = np.array(face_colors).astype(np.uint8)
# mesh_save = mesh.copy()
# mesh_save.visual.face_colors = face_colors
# mesh_save.export(os.path.join(output_path, 'auto_mask_mesh.glb'))
# scene_mesh = trimesh.Scene()
# scene_mesh.add_geometry(mesh_save)
# for i in range(len(aabb)):
# min_xyz, max_xyz = aabb[i]
# center = (min_xyz + max_xyz) / 2
# size = max_xyz - min_xyz
# box = trimesh.path.creation.box_outline()
# box.vertices *= size
# box.vertices += center
# scene_mesh.add_geometry(box)
# scene_mesh.export(os.path.join(output_path, 'auto_mask_aabb.glb'))
################# save result #################
'''
python auto_mask.py --parallel 0
python auto_mask.py --ckpt_path ../weights/last.ckpt --mesh_path assets/1.glb --output_path results/1 --parallel 0
python auto_mask.py --ckpt_path ../weights/last.ckpt --mesh_path assets --output_path results/all
''' |