Spaces:
Running
on
Zero
Running
on
Zero
File size: 34,092 Bytes
7b75adb 0bf21ce 7b75adb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 |
import os
import sys
import torch
import torch.nn as nn
import numpy as np
import argparse
import trimesh
from sklearn.decomposition import PCA
import fpsample
from tqdm import tqdm
import threading
import random
# from tqdm.notebook import tqdm
import time
import copy
import shutil
from pathlib import Path
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor, as_completed
from collections import defaultdict
import numba
from numba import njit
sys.path.append("..")
from model import build_P3SAM, load_state_dict
from utils.chamfer3D.dist_chamfer_3D import chamfer_3DDist
cmd_loss = chamfer_3DDist()
class P3SAM(nn.Module):
def __init__(self):
super().__init__()
build_P3SAM(self)
def load_state_dict(self,
ckpt_path=None,
state_dict=None,
strict=True,
assign=False,
ignore_seg_mlp=False,
ignore_seg_s2_mlp=False,
ignore_iou_mlp=False):
load_state_dict(self,
ckpt_path=ckpt_path,
state_dict=state_dict,
strict=strict,
assign=assign,
ignore_seg_mlp=ignore_seg_mlp,
ignore_seg_s2_mlp=ignore_seg_s2_mlp,
ignore_iou_mlp=ignore_iou_mlp)
def forward(self, feats, points, point_prompt, iter=1):
"""
feats: [K, N, 512]
points: [K, N, 3]
point_prompt: [K, N, 3]
"""
# print(feats.shape, points.shape, point_prompt.shape)
point_num = points.shape[1]
feats = feats.transpose(0, 1) # [N, K, 512]
points = points.transpose(0, 1) # [N, K, 3]
point_prompt = point_prompt.transpose(0, 1) # [N, K, 3]
feats_seg = torch.cat([feats, points, point_prompt], dim=-1) # [N, K, 512+3+3]
# 预测mask stage-1
pred_mask_1 = self.seg_mlp_1(feats_seg).squeeze(-1) # [N, K]
pred_mask_2 = self.seg_mlp_2(feats_seg).squeeze(-1) # [N, K]
pred_mask_3 = self.seg_mlp_3(feats_seg).squeeze(-1) # [N, K]
pred_mask = torch.stack(
[pred_mask_1, pred_mask_2, pred_mask_3], dim=-1
) # [N, K, 3]
for _ in range(iter):
# 预测mask stage-2
feats_seg_2 = torch.cat([feats_seg, pred_mask], dim=-1) # [N, K, 512+3+3+3]
feats_seg_global = self.seg_s2_mlp_g(feats_seg_2) # [N, K, 512]
feats_seg_global = torch.max(feats_seg_global, dim=0).values # [K, 512]
feats_seg_global = feats_seg_global.unsqueeze(0).repeat(
point_num, 1, 1
) # [N, K, 512]
feats_seg_3 = torch.cat(
[feats_seg_global, feats_seg_2], dim=-1
) # [N, K, 512+3+3+3+512]
pred_mask_s2_1 = self.seg_s2_mlp_1(feats_seg_3).squeeze(-1) # [N, K]
pred_mask_s2_2 = self.seg_s2_mlp_2(feats_seg_3).squeeze(-1) # [N, K]
pred_mask_s2_3 = self.seg_s2_mlp_3(feats_seg_3).squeeze(-1) # [N, K]
pred_mask_s2 = torch.stack(
[pred_mask_s2_1, pred_mask_s2_2, pred_mask_s2_3], dim=-1
) # [N,, K 3]
pred_mask = pred_mask_s2
mask_1 = torch.sigmoid(pred_mask_s2_1).to(dtype=torch.float32) # [N, K]
mask_2 = torch.sigmoid(pred_mask_s2_2).to(dtype=torch.float32) # [N, K]
mask_3 = torch.sigmoid(pred_mask_s2_3).to(dtype=torch.float32) # [N, K]
feats_iou = torch.cat(
[feats_seg_global, feats_seg, pred_mask_s2], dim=-1
) # [N, K, 512+3+3+3+512]
feats_iou = self.iou_mlp(feats_iou) # [N, K, 512]
feats_iou = torch.max(feats_iou, dim=0).values # [K, 512]
pred_iou = self.iou_mlp_out(feats_iou) # [K, 3]
pred_iou = torch.sigmoid(pred_iou).to(dtype=torch.float32) # [K, 3]
mask_1 = mask_1.transpose(0, 1) # [K, N]
mask_2 = mask_2.transpose(0, 1) # [K, N]
mask_3 = mask_3.transpose(0, 1) # [K, N]
return mask_1, mask_2, mask_3, pred_iou
def normalize_pc(pc):
"""
pc: (N, 3)
"""
max_, min_ = np.max(pc, axis=0), np.min(pc, axis=0)
center = (max_ + min_) / 2
scale = (max_ - min_) / 2
scale = np.max(np.abs(scale))
pc = (pc - center) / (scale + 1e-10)
return pc
@torch.no_grad()
def get_feat(model, points, normals):
data_dict = {
"coord": points,
"normal": normals,
"color": np.ones_like(points),
"batch": np.zeros(points.shape[0], dtype=np.int64),
}
data_dict = model.transform(data_dict)
for k in data_dict:
if isinstance(data_dict[k], torch.Tensor):
data_dict[k] = data_dict[k].cuda()
point = model.sonata(data_dict)
while "pooling_parent" in point.keys():
assert "pooling_inverse" in point.keys()
parent = point.pop("pooling_parent")
inverse = point.pop("pooling_inverse")
parent.feat = torch.cat([parent.feat, point.feat[inverse]], dim=-1)
point = parent
feat = point.feat # [M, 1232]
feat = model.mlp(feat) # [M, 512]
feat = feat[point.inverse] # [N, 512]
feats = feat
return feats
@torch.no_grad()
def get_mask(model, feats, points, point_prompt, iter=1):
"""
feats: [N, 512]
points: [N, 3]
point_prompt: [K, 3]
"""
point_num = points.shape[0]
prompt_num = point_prompt.shape[0]
feats = feats.unsqueeze(1) # [N, 1, 512]
feats = feats.repeat(1, prompt_num, 1).cuda() # [N, K, 512]
points = torch.from_numpy(points).float().cuda().unsqueeze(1) # [N, 1, 3]
points = points.repeat(1, prompt_num, 1) # [N, K, 3]
prompt_coord = (
torch.from_numpy(point_prompt).float().cuda().unsqueeze(0)
) # [1, K, 3]
prompt_coord = prompt_coord.repeat(point_num, 1, 1) # [N, K, 3]
feats = feats.transpose(0, 1) # [K, N, 512]
points = points.transpose(0, 1) # [K, N, 3]
prompt_coord = prompt_coord.transpose(0, 1) # [K, N, 3]
mask_1, mask_2, mask_3, pred_iou = model(feats, points, prompt_coord, iter)
mask_1 = mask_1.transpose(0, 1) # [N, K]
mask_2 = mask_2.transpose(0, 1) # [N, K]
mask_3 = mask_3.transpose(0, 1) # [N, K]
mask_1 = mask_1.detach().cpu().numpy() > 0.5
mask_2 = mask_2.detach().cpu().numpy() > 0.5
mask_3 = mask_3.detach().cpu().numpy() > 0.5
org_iou = pred_iou.detach().cpu().numpy() # [K, 3]
return mask_1, mask_2, mask_3, org_iou
def cal_iou(m1, m2):
return np.sum(np.logical_and(m1, m2)) / np.sum(np.logical_or(m1, m2))
def cal_single_iou(m1, m2):
return np.sum(np.logical_and(m1, m2)) / np.sum(m1)
def iou_3d(box1, box2, signle=None):
"""
计算两个三维边界框的交并比 (IoU)
参数:
box1 (list): 第一个边界框的坐标 [x1_min, y1_min, z1_min, x1_max, y1_max, z1_max]
box2 (list): 第二个边界框的坐标 [x2_min, y2_min, z2_min, x2_max, y2_max, z2_max]
返回:
float: 交并比 (IoU) 值
"""
# 计算交集的坐标
intersection_xmin = max(box1[0], box2[0])
intersection_ymin = max(box1[1], box2[1])
intersection_zmin = max(box1[2], box2[2])
intersection_xmax = min(box1[3], box2[3])
intersection_ymax = min(box1[4], box2[4])
intersection_zmax = min(box1[5], box2[5])
# 判断是否有交集
if (
intersection_xmin >= intersection_xmax
or intersection_ymin >= intersection_ymax
or intersection_zmin >= intersection_zmax
):
return 0.0 # 无交集
# 计算交集的体积
intersection_volume = (
(intersection_xmax - intersection_xmin)
* (intersection_ymax - intersection_ymin)
* (intersection_zmax - intersection_zmin)
)
# 计算两个盒子的体积
box1_volume = (box1[3] - box1[0]) * (box1[4] - box1[1]) * (box1[5] - box1[2])
box2_volume = (box2[3] - box2[0]) * (box2[4] - box2[1]) * (box2[5] - box2[2])
if signle is None:
# 计算并集的体积
union_volume = box1_volume + box2_volume - intersection_volume
elif signle == "1":
union_volume = box1_volume
elif signle == "2":
union_volume = box2_volume
else:
raise ValueError("signle must be None or 1 or 2")
# 计算 IoU
iou = intersection_volume / union_volume if union_volume > 0 else 0.0
return iou
def cal_point_bbox_iou(p1, p2, signle=None):
min_p1 = np.min(p1, axis=0)
max_p1 = np.max(p1, axis=0)
min_p2 = np.min(p2, axis=0)
max_p2 = np.max(p2, axis=0)
box1 = [min_p1[0], min_p1[1], min_p1[2], max_p1[0], max_p1[1], max_p1[2]]
box2 = [min_p2[0], min_p2[1], min_p2[2], max_p2[0], max_p2[1], max_p2[2]]
return iou_3d(box1, box2, signle)
def cal_bbox_iou(points, m1, m2):
p1 = points[m1]
p2 = points[m2]
return cal_point_bbox_iou(p1, p2)
def clean_mesh(mesh):
"""
mesh: trimesh.Trimesh
"""
# 1. 合并接近的顶点
mesh.merge_vertices()
# 2. 删除重复的顶点
# 3. 删除重复的面片
mesh.process(True)
return mesh
def get_aabb_from_face_ids(mesh, face_ids):
unique_ids = np.unique(face_ids)
aabb = []
for i in unique_ids:
if i == -1 or i == -2:
continue
_part_mask = face_ids == i
_faces = mesh.faces[_part_mask]
_faces = np.reshape(_faces, (-1))
_points = mesh.vertices[_faces]
min_xyz = np.min(_points, axis=0)
max_xyz = np.max(_points, axis=0)
aabb.append([min_xyz, max_xyz])
return np.array(aabb)
class Timer:
def __init__(self, name):
self.name = name
def __enter__(self):
self.start_time = time.time()
return self # 可以返回 self 以便在 with 块内访问
def __exit__(self, exc_type, exc_val, exc_tb):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
print(f">>>>>>代码{self.name} 运行时间: {self.elapsed_time:.4f} 秒")
def sample_points_pre_face(vertices, faces, n_point_per_face=2000):
n_f = faces.shape[0] # 面片数量
# 生成随机数 u, v
u = np.sqrt(np.random.rand(n_f, n_point_per_face, 1)) # (n_f, n_point_per_face, 1)
v = np.random.rand(n_f, n_point_per_face, 1) # (n_f, n_point_per_face, 1)
# 计算 barycentric 坐标
w0 = 1 - u
w1 = u * (1 - v)
w2 = u * v # (n_f, n_point_per_face, 1)
# 从顶点中提取每个面的三个顶点
face_v_0 = vertices[faces[:, 0].reshape(-1)] # (n_f, 3)
face_v_1 = vertices[faces[:, 1].reshape(-1)] # (n_f, 3)
face_v_2 = vertices[faces[:, 2].reshape(-1)] # (n_f, 3)
# 扩展维度以匹配 w0, w1, w2 的形状
face_v_0 = face_v_0.reshape(n_f, 1, 3) # (n_f, 1, 3)
face_v_1 = face_v_1.reshape(n_f, 1, 3) # (n_f, 1, 3)
face_v_2 = face_v_2.reshape(n_f, 1, 3) # (n_f, 1, 3)
# 计算每个点的坐标
points = w0 * face_v_0 + w1 * face_v_1 + w2 * face_v_2 # (n_f, n_point_per_face, 3)
return points
def cal_cd_batch(p1, p2, pn=100000):
p1_n = p1.shape[0]
batch_num = (p1_n + pn - 1) // pn
p2_cuda = torch.from_numpy(p2).cuda().float().unsqueeze(0)
p1_cuda = torch.from_numpy(p1).cuda().float().unsqueeze(0)
cd_res = []
for i in tqdm(range(batch_num)):
start_idx = i * pn
end_idx = min((i + 1) * pn, p1_n)
_p1_cuda = p1_cuda[:, start_idx:end_idx, :]
_, _, idx, _ = cmd_loss(_p1_cuda, p2_cuda)
idx = idx[0].detach().cpu().numpy()
cd_res.append(idx)
cd_res = np.concatenate(cd_res, axis=0)
return cd_res
def remove_outliers_iqr(data, factor=1.5):
"""
基于 IQR 去除离群值
:param data: 输入的列表或 NumPy 数组
:param factor: IQR 的倍数(默认 1.5)
:return: 去除离群值后的列表
"""
data = np.array(data, dtype=np.float32)
q1 = np.percentile(data, 25) # 第一四分位数
q3 = np.percentile(data, 75) # 第三四分位数
iqr = q3 - q1 # 四分位距
lower_bound = q1 - factor * iqr
upper_bound = q3 + factor * iqr
return data[(data >= lower_bound) & (data <= upper_bound)].tolist()
def better_aabb(points):
x = points[:, 0]
y = points[:, 1]
z = points[:, 2]
x = remove_outliers_iqr(x)
y = remove_outliers_iqr(y)
z = remove_outliers_iqr(z)
min_xyz = np.array([np.min(x), np.min(y), np.min(z)])
max_xyz = np.array([np.max(x), np.max(y), np.max(z)])
return [min_xyz, max_xyz]
def save_mesh(save_path, mesh, face_ids, color_map):
face_colors = np.zeros((len(mesh.faces), 3), dtype=np.uint8)
for i in tqdm(range(len(mesh.faces)), disable=True):
_max_id = face_ids[i]
if _max_id == -2:
continue
face_colors[i, :3] = color_map[_max_id]
mesh_save = trimesh.Trimesh(vertices=mesh.vertices, faces=mesh.faces)
mesh_save.visual.face_colors = face_colors
mesh_save.export(save_path)
mesh_save.export(save_path.replace(".glb", ".ply"))
# print('保存mesh完成')
scene_mesh = trimesh.Scene()
scene_mesh.add_geometry(mesh_save)
unique_ids = np.unique(face_ids)
aabb = []
for i in unique_ids:
if i == -1 or i == -2:
continue
_part_mask = face_ids == i
_faces = mesh.faces[_part_mask]
_faces = np.reshape(_faces, (-1))
_points = mesh.vertices[_faces]
min_xyz, max_xyz = better_aabb(_points)
center = (min_xyz + max_xyz) / 2
size = max_xyz - min_xyz
box = trimesh.path.creation.box_outline()
box.vertices *= size
box.vertices += center
box_color = np.array([[color_map[i][0], color_map[i][1], color_map[i][2], 255]])
box_color = np.repeat(box_color, len(box.entities), axis=0).astype(np.uint8)
box.colors = box_color
scene_mesh.add_geometry(box)
min_xyz = np.min(_points, axis=0)
max_xyz = np.max(_points, axis=0)
aabb.append([min_xyz, max_xyz])
scene_mesh.export(save_path.replace(".glb", "_aabb.glb"))
aabb = np.array(aabb)
np.save(save_path.replace(".glb", "_aabb.npy"), aabb)
np.save(save_path.replace(".glb", "_face_ids.npy"), face_ids)
def mesh_sam(
model,
mesh,
save_path,
point_num=100000,
prompt_num=400,
save_mid_res=False,
show_info=False,
post_process=False,
threshold=0.95,
clean_mesh_flag=True,
seed=42,
prompt_bs=32,
):
with Timer("加载mesh"):
model, model_parallel = model
if clean_mesh_flag:
mesh = clean_mesh(mesh)
mesh = trimesh.Trimesh(vertices=mesh.vertices, faces=mesh.faces, process=False)
if show_info:
print(f"点数:{mesh.vertices.shape[0]} 面片数:{mesh.faces.shape[0]}")
point_num = 100000
prompt_num = 400
with Timer("采样点云"):
_points, face_idx = trimesh.sample.sample_surface(mesh, point_num, seed=seed)
_points_org = _points.copy()
_points = normalize_pc(_points)
normals = mesh.face_normals[face_idx]
# _points = _points + np.random.normal(0, 1, size=_points.shape) * 0.01
# normals = normals * 0. # debug no normal
if show_info:
print(f"点数:{point_num} 面片数:{mesh.faces.shape[0]}")
with Timer("获取特征"):
_feats = get_feat(model, _points, normals)
if show_info:
print("预处理特征")
if save_mid_res:
feat_save = _feats.float().detach().cpu().numpy()
data_scaled = feat_save / np.linalg.norm(feat_save, axis=-1, keepdims=True)
pca = PCA(n_components=3)
data_reduced = pca.fit_transform(data_scaled)
data_reduced = (data_reduced - data_reduced.min()) / (
data_reduced.max() - data_reduced.min()
)
_colors_pca = (data_reduced * 255).astype(np.uint8)
pc_save = trimesh.points.PointCloud(_points, colors=_colors_pca)
pc_save.export(os.path.join(save_path, "point_pca.glb"))
pc_save.export(os.path.join(save_path, "point_pca.ply"))
if show_info:
print("PCA获取特征颜色")
with Timer("FPS采样提示点"):
fps_idx = fpsample.fps_sampling(_points, prompt_num)
_point_prompts = _points[fps_idx]
if save_mid_res:
trimesh.points.PointCloud(_point_prompts, colors=_colors_pca[fps_idx]).export(
os.path.join(save_path, "point_prompts_pca.glb")
)
trimesh.points.PointCloud(_point_prompts, colors=_colors_pca[fps_idx]).export(
os.path.join(save_path, "point_prompts_pca.ply")
)
if show_info:
print("采样完成")
with Timer("推理"):
bs = prompt_bs
step_num = prompt_num // bs + 1
mask_res = []
iou_res = []
for i in tqdm(range(step_num), disable=not show_info):
cur_propmt = _point_prompts[bs * i : bs * (i + 1)]
pred_mask_1, pred_mask_2, pred_mask_3, pred_iou = get_mask(
model_parallel, _feats, _points, cur_propmt
)
pred_mask = np.stack(
[pred_mask_1, pred_mask_2, pred_mask_3], axis=-1
) # [N, K, 3]
max_idx = np.argmax(pred_iou, axis=-1) # [K]
for j in range(max_idx.shape[0]):
mask_res.append(pred_mask[:, j, max_idx[j]])
iou_res.append(pred_iou[j, max_idx[j]])
mask_res = np.stack(mask_res, axis=-1) # [N, K]
if show_info:
print("prmopt 推理完成")
with Timer("根据IOU排序"):
iou_res = np.array(iou_res).tolist()
mask_iou = [[mask_res[:, i], iou_res[i]] for i in range(prompt_num)]
mask_iou_sorted = sorted(mask_iou, key=lambda x: x[1], reverse=True)
mask_sorted = [mask_iou_sorted[i][0] for i in range(prompt_num)]
iou_sorted = [mask_iou_sorted[i][1] for i in range(prompt_num)]
# clusters = {}
# for i in tqdm(range(prompt_num), desc="NMS", disable=not show_info):
# _mask = mask_sorted[i]
# union_flag = False
# for j in clusters.keys():
# if cal_iou(_mask, mask_sorted[j]) > 0.9:
# clusters[j].append(i)
# union_flag = True
# break
# if not union_flag:
# clusters[i] = [i]
with Timer("NMS"):
clusters = defaultdict(list)
with ThreadPoolExecutor(max_workers=20) as executor:
for i in tqdm(range(prompt_num), desc="NMS", disable=not show_info):
_mask = mask_sorted[i]
futures = []
for j in clusters.keys():
futures.append(executor.submit(cal_iou, _mask, mask_sorted[j]))
for j, future in zip(clusters.keys(), futures):
if future.result() > 0.9:
clusters[j].append(i)
break
else:
clusters[i].append(i)
# print(clusters)
if show_info:
print(f"NMS完成,mask数量:{len(clusters)}")
if save_mid_res:
part_mask_save_path = os.path.join(save_path, "part_mask")
if os.path.exists(part_mask_save_path):
shutil.rmtree(part_mask_save_path)
os.makedirs(part_mask_save_path, exist_ok=True)
for i in tqdm(clusters.keys(), desc="保存mask", disable=not show_info):
cluster_num = len(clusters[i])
cluster_iou = iou_sorted[i]
cluster_area = np.sum(mask_sorted[i])
if cluster_num <= 2:
continue
mask_save = mask_sorted[i]
mask_save = np.expand_dims(mask_save, axis=-1)
mask_save = np.repeat(mask_save, 3, axis=-1)
mask_save = (mask_save * 255).astype(np.uint8)
point_save = trimesh.points.PointCloud(_points, colors=mask_save)
point_save.export(
os.path.join(
part_mask_save_path,
f"mask_{i}_iou_{cluster_iou:.5f}_area_{cluster_area:.5f}_num_{cluster_num}.glb",
)
)
# 过滤只有一个mask的cluster
with Timer("过滤只有一个mask的cluster"):
filtered_clusters = []
other_clusters = []
for i in clusters.keys():
if len(clusters[i]) > 2:
filtered_clusters.append(i)
else:
other_clusters.append(i)
if show_info:
print(
f"过滤前:{len(clusters)} 个cluster,"
f"过滤后:{len(filtered_clusters)} 个cluster"
)
# 再次合并
with Timer("再次合并"):
filtered_clusters_num = len(filtered_clusters)
cluster2 = {}
is_union = [False] * filtered_clusters_num
for i in range(filtered_clusters_num):
if is_union[i]:
continue
cur_cluster = filtered_clusters[i]
cluster2[cur_cluster] = [cur_cluster]
for j in range(i + 1, filtered_clusters_num):
if is_union[j]:
continue
tar_cluster = filtered_clusters[j]
# if cal_single_iou(mask_sorted[tar_cluster], mask_sorted[cur_cluster]) > 0.9:
# if cal_iou(mask_sorted[tar_cluster], mask_sorted[cur_cluster]) > 0.5:
if (
cal_bbox_iou(
_points, mask_sorted[tar_cluster], mask_sorted[cur_cluster]
)
> 0.5
):
cluster2[cur_cluster].append(tar_cluster)
is_union[j] = True
if show_info:
print(f"再次合并,合并数量:{len(cluster2.keys())}")
with Timer("计算没有mask的点"):
no_mask = np.ones(point_num)
for i in cluster2:
part_mask = mask_sorted[i]
no_mask[part_mask] = 0
if show_info:
print(
f"{np.sum(no_mask == 1)} 个点没有mask,"
f" 占比:{np.sum(no_mask == 1) / point_num:.4f}"
)
with Timer("修补遗漏mask"):
# 查询漏掉的mask
for i in tqdm(range(len(mask_sorted)), desc="漏掉mask", disable=not show_info):
if i in cluster2:
continue
part_mask = mask_sorted[i]
_iou = cal_single_iou(part_mask, no_mask)
if _iou > 0.7:
cluster2[i] = [i]
no_mask[part_mask] = 0
if save_mid_res:
mask_save = mask_sorted[i]
mask_save = np.expand_dims(mask_save, axis=-1)
mask_save = np.repeat(mask_save, 3, axis=-1)
mask_save = (mask_save * 255).astype(np.uint8)
point_save = trimesh.points.PointCloud(_points, colors=mask_save)
cluster_iou = iou_sorted[i]
cluster_area = int(np.sum(mask_sorted[i]))
cluster_num = 1
point_save.export(
os.path.join(
part_mask_save_path,
f"mask_{i}_iou_{cluster_iou:.5f}_area_{cluster_area:.5f}_num_{cluster_num}.glb",
)
)
# print(cluster2)
# print(len(cluster2.keys()))
if show_info:
print(f"修补遗漏mask:{len(cluster2.keys())}")
with Timer("计算点云最终mask"):
final_mask = list(cluster2.keys())
final_mask_area = [int(np.sum(mask_sorted[i])) for i in final_mask]
final_mask_area = [
[final_mask[i], final_mask_area[i]] for i in range(len(final_mask))
]
final_mask_area_sorted = sorted(
final_mask_area, key=lambda x: x[1], reverse=True
)
final_mask_sorted = [
final_mask_area_sorted[i][0] for i in range(len(final_mask_area))
]
final_mask_area_sorted = [
final_mask_area_sorted[i][1] for i in range(len(final_mask_area))
]
# print(final_mask_sorted)
# print(final_mask_area_sorted)
if show_info:
print(f"最终mask数量:{len(final_mask_sorted)}")
with Timer("点云上色"):
# 生成color map
color_map = {}
for i in final_mask_sorted:
part_color = np.random.rand(3) * 255
color_map[i] = part_color
# print(color_map)
result_mask = -np.ones(point_num, dtype=np.int64)
for i in final_mask_sorted:
part_mask = mask_sorted[i]
result_mask[part_mask] = i
if save_mid_res:
# 保存点云结果
result_colors = np.zeros_like(_colors_pca)
for i in final_mask_sorted:
part_color = color_map[i]
part_mask = mask_sorted[i]
result_colors[part_mask, :3] = part_color
trimesh.points.PointCloud(_points, colors=result_colors).export(
os.path.join(save_path, "auto_mask_cluster.glb")
)
trimesh.points.PointCloud(_points, colors=result_colors).export(
os.path.join(save_path, "auto_mask_cluster.ply")
)
if show_info:
print("保存点云完成")
with Timer("后处理"):
valid_mask = result_mask >= 0
_org = _points_org[valid_mask]
_results = result_mask[valid_mask]
pre_face = 10
_face_points = sample_points_pre_face(
mesh.vertices, mesh.faces, n_point_per_face=pre_face
)
_face_points = np.reshape(_face_points, (len(mesh.faces) * pre_face, 3))
_idx = cal_cd_batch(_face_points, _org)
_idx_res = _results[_idx]
_idx_res = np.reshape(_idx_res, (-1, pre_face))
face_ids = []
for i in range(len(mesh.faces)):
_label = np.argmax(np.bincount(_idx_res[i] + 2)) - 2
face_ids.append(_label)
final_face_ids = np.array(face_ids)
if save_mid_res:
save_mesh(
os.path.join(save_path, "auto_mask_mesh_final.glb"),
mesh,
final_face_ids,
color_map,
)
with Timer("计算最后的aabb"):
aabb = get_aabb_from_face_ids(mesh, final_face_ids)
return aabb, final_face_ids, mesh
class AutoMask:
def __init__(
self,
ckpt_path=None,
point_num=100000,
prompt_num=400,
threshold=0.95,
post_process=True,
automask_instance=None,
):
"""
ckpt_path: str, 模型路径
point_num: int, 采样点数量
prompt_num: int, 提示数量
threshold: float, 阈值
post_process: bool, 是否后处理
"""
if automask_instance is not None:
self.model = automask_instance.model
self.model_parallel = automask_instance.model_parallel
else:
self.model = P3SAM()
self.model.load_state_dict(ckpt_path)
self.model.eval()
# self.model_parallel = torch.nn.DataParallel(self.model)
self.model_parallel = self.model
self.model.cuda()
self.model_parallel.cuda()
self.point_num = point_num
self.prompt_num = prompt_num
self.threshold = threshold
self.post_process = post_process
def predict_aabb(
self,
mesh,
point_num=None,
prompt_num=None,
threshold=None,
post_process=None,
save_path=None,
save_mid_res=False,
show_info=True,
clean_mesh_flag=True,
seed=42,
is_parallel=True,
prompt_bs=32,
):
"""
Parameters:
mesh: trimesh.Trimesh, 输入网格
point_num: int, 采样点数量
prompt_num: int, 提示数量
threshold: float, 阈值
post_process: bool, 是否后处理
Returns:
aabb: np.ndarray, 包围盒
face_ids: np.ndarray, 面id
"""
point_num = point_num if point_num is not None else self.point_num
prompt_num = prompt_num if prompt_num is not None else self.prompt_num
threshold = threshold if threshold is not None else self.threshold
post_process = post_process if post_process is not None else self.post_process
return mesh_sam(
[self.model, self.model_parallel if is_parallel else self.model],
mesh,
save_path=save_path,
point_num=point_num,
prompt_num=prompt_num,
threshold=threshold,
post_process=post_process,
show_info=show_info,
save_mid_res=save_mid_res,
clean_mesh_flag=clean_mesh_flag,
seed=seed,
prompt_bs=prompt_bs,
)
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if __name__ == "__main__":
argparser = argparse.ArgumentParser()
argparser.add_argument(
"--ckpt_path", type=str, default=None, help="模型路径"
)
argparser.add_argument(
"--mesh_path", type=str, default="assets/1.glb", help="输入网格路径"
)
argparser.add_argument(
"--output_path", type=str, default="results/1", help="保存路径"
)
argparser.add_argument("--point_num", type=int, default=100000, help="采样点数量")
argparser.add_argument("--prompt_num", type=int, default=400, help="提示数量")
argparser.add_argument("--threshold", type=float, default=0.95, help="阈值")
argparser.add_argument("--post_process", type=int, default=0, help="是否后处理")
argparser.add_argument(
"--save_mid_res", type=int, default=1, help="是否保存中间结果"
)
argparser.add_argument("--show_info", type=int, default=1, help="是否显示信息")
argparser.add_argument(
"--show_time_info", type=int, default=1, help="是否显示时间信息"
)
argparser.add_argument("--seed", type=int, default=42, help="随机种子")
argparser.add_argument("--parallel", type=int, default=1, help="是否使用多卡")
argparser.add_argument(
"--prompt_bs", type=int, default=32, help="提示点推理时的batch size大小"
)
argparser.add_argument("--clean_mesh", type=int, default=1, help="是否清洗网格")
args = argparser.parse_args()
Timer.STATE = args.show_time_info
output_path = args.output_path
os.makedirs(output_path, exist_ok=True)
ckpt_path = args.ckpt_path
auto_mask = AutoMask(ckpt_path)
mesh_path = args.mesh_path
if os.path.isdir(mesh_path):
for file in os.listdir(mesh_path):
if not (
file.endswith(".glb") or file.endswith(".obj") or file.endswith(".ply")
):
continue
_mesh_path = os.path.join(mesh_path, file)
_output_path = os.path.join(output_path, file[:-4])
os.makedirs(_output_path, exist_ok=True)
mesh = trimesh.load(_mesh_path, force="mesh")
set_seed(args.seed)
aabb, face_ids, mesh = auto_mask.predict_aabb(
mesh,
save_path=_output_path,
point_num=args.point_num,
prompt_num=args.prompt_num,
threshold=args.threshold,
post_process=args.post_process,
save_mid_res=args.save_mid_res,
show_info=args.show_info,
seed=args.seed,
is_parallel=args.parallel,
clean_mesh_flag=args.clean_mesh,
)
else:
mesh = trimesh.load(mesh_path, force="mesh")
set_seed(args.seed)
aabb, face_ids, mesh = auto_mask.predict_aabb(
mesh,
save_path=output_path,
point_num=args.point_num,
prompt_num=args.prompt_num,
threshold=args.threshold,
post_process=args.post_process,
save_mid_res=args.save_mid_res,
show_info=args.show_info,
seed=args.seed,
is_parallel=args.parallel,
clean_mesh_flag=args.clean_mesh,
)
###############################################
## 可以通过以下代码保存返回的结果
## You can save the returned result by the following code
################# save result #################
# color_map = {}
# unique_ids = np.unique(face_ids)
# for i in unique_ids:
# if i == -1:
# continue
# part_color = np.random.rand(3) * 255
# color_map[i] = part_color
# face_colors = []
# for i in face_ids:
# if i == -1:
# face_colors.append([0, 0, 0])
# else:
# face_colors.append(color_map[i])
# face_colors = np.array(face_colors).astype(np.uint8)
# mesh_save = mesh.copy()
# mesh_save.visual.face_colors = face_colors
# mesh_save.export(os.path.join(output_path, 'auto_mask_mesh.glb'))
# scene_mesh = trimesh.Scene()
# scene_mesh.add_geometry(mesh_save)
# for i in range(len(aabb)):
# min_xyz, max_xyz = aabb[i]
# center = (min_xyz + max_xyz) / 2
# size = max_xyz - min_xyz
# box = trimesh.path.creation.box_outline()
# box.vertices *= size
# box.vertices += center
# scene_mesh.add_geometry(box)
# scene_mesh.export(os.path.join(output_path, 'auto_mask_aabb.glb'))
################# save result #################
"""
python auto_mask_no_postprocess.py --parallel 0
python auto_mask_no_postprocess.py --ckpt_path ../weights/p3sam.ckpt --mesh_path assets/1.glb --output_path results/1 --parallel 0
python auto_mask_no_postprocess.py --ckpt_path ../weights/p3sam.ckpt --mesh_path assets --output_path results/all_no_postprocess
"""
|