File size: 34,092 Bytes
7b75adb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bf21ce
 
7b75adb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
import os
import sys
import torch
import torch.nn as nn
import numpy as np
import argparse
import trimesh
from sklearn.decomposition import PCA
import fpsample
from tqdm import tqdm
import threading
import random

# from tqdm.notebook import tqdm
import time
import copy
import shutil
from pathlib import Path
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor, as_completed
from collections import defaultdict

import numba
from numba import njit

sys.path.append("..")
from model import build_P3SAM, load_state_dict

from utils.chamfer3D.dist_chamfer_3D import chamfer_3DDist

cmd_loss = chamfer_3DDist()


class P3SAM(nn.Module):
    def __init__(self):
        super().__init__()
        build_P3SAM(self)

    def load_state_dict(self, 
                        ckpt_path=None, 
                        state_dict=None, 
                        strict=True, 
                        assign=False, 
                        ignore_seg_mlp=False, 
                        ignore_seg_s2_mlp=False, 
                        ignore_iou_mlp=False):
        load_state_dict(self, 
                        ckpt_path=ckpt_path, 
                        state_dict=state_dict, 
                        strict=strict, 
                        assign=assign, 
                        ignore_seg_mlp=ignore_seg_mlp, 
                        ignore_seg_s2_mlp=ignore_seg_s2_mlp, 
                        ignore_iou_mlp=ignore_iou_mlp)
        
    def forward(self, feats, points, point_prompt, iter=1):
        """
        feats: [K, N, 512]
        points: [K, N, 3]
        point_prompt: [K, N, 3]
        """
        # print(feats.shape, points.shape, point_prompt.shape)
        point_num = points.shape[1]
        feats = feats.transpose(0, 1)  # [N, K, 512]
        points = points.transpose(0, 1)  # [N, K, 3]
        point_prompt = point_prompt.transpose(0, 1)  # [N, K, 3]
        feats_seg = torch.cat([feats, points, point_prompt], dim=-1)  # [N, K, 512+3+3]

        # 预测mask stage-1
        pred_mask_1 = self.seg_mlp_1(feats_seg).squeeze(-1)  # [N, K]
        pred_mask_2 = self.seg_mlp_2(feats_seg).squeeze(-1)  # [N, K]
        pred_mask_3 = self.seg_mlp_3(feats_seg).squeeze(-1)  # [N, K]
        pred_mask = torch.stack(
            [pred_mask_1, pred_mask_2, pred_mask_3], dim=-1
        )  # [N, K, 3]

        for _ in range(iter):
            # 预测mask stage-2
            feats_seg_2 = torch.cat([feats_seg, pred_mask], dim=-1)  # [N, K, 512+3+3+3]
            feats_seg_global = self.seg_s2_mlp_g(feats_seg_2)  # [N, K, 512]
            feats_seg_global = torch.max(feats_seg_global, dim=0).values  # [K, 512]
            feats_seg_global = feats_seg_global.unsqueeze(0).repeat(
                point_num, 1, 1
            )  # [N, K, 512]
            feats_seg_3 = torch.cat(
                [feats_seg_global, feats_seg_2], dim=-1
            )  # [N, K, 512+3+3+3+512]
            pred_mask_s2_1 = self.seg_s2_mlp_1(feats_seg_3).squeeze(-1)  # [N, K]
            pred_mask_s2_2 = self.seg_s2_mlp_2(feats_seg_3).squeeze(-1)  # [N, K]
            pred_mask_s2_3 = self.seg_s2_mlp_3(feats_seg_3).squeeze(-1)  # [N, K]
            pred_mask_s2 = torch.stack(
                [pred_mask_s2_1, pred_mask_s2_2, pred_mask_s2_3], dim=-1
            )  # [N,, K 3]
            pred_mask = pred_mask_s2

        mask_1 = torch.sigmoid(pred_mask_s2_1).to(dtype=torch.float32)  # [N, K]
        mask_2 = torch.sigmoid(pred_mask_s2_2).to(dtype=torch.float32)  # [N, K]
        mask_3 = torch.sigmoid(pred_mask_s2_3).to(dtype=torch.float32)  # [N, K]

        feats_iou = torch.cat(
            [feats_seg_global, feats_seg, pred_mask_s2], dim=-1
        )  # [N, K, 512+3+3+3+512]
        feats_iou = self.iou_mlp(feats_iou)  # [N, K, 512]
        feats_iou = torch.max(feats_iou, dim=0).values  # [K, 512]
        pred_iou = self.iou_mlp_out(feats_iou)  # [K, 3]
        pred_iou = torch.sigmoid(pred_iou).to(dtype=torch.float32)  # [K, 3]

        mask_1 = mask_1.transpose(0, 1)  # [K, N]
        mask_2 = mask_2.transpose(0, 1)  # [K, N]
        mask_3 = mask_3.transpose(0, 1)  # [K, N]

        return mask_1, mask_2, mask_3, pred_iou


def normalize_pc(pc):
    """
    pc: (N, 3)
    """
    max_, min_ = np.max(pc, axis=0), np.min(pc, axis=0)
    center = (max_ + min_) / 2
    scale = (max_ - min_) / 2
    scale = np.max(np.abs(scale))
    pc = (pc - center) / (scale + 1e-10)
    return pc


@torch.no_grad()
def get_feat(model, points, normals):
    data_dict = {
        "coord": points,
        "normal": normals,
        "color": np.ones_like(points),
        "batch": np.zeros(points.shape[0], dtype=np.int64),
    }
    data_dict = model.transform(data_dict)
    for k in data_dict:
        if isinstance(data_dict[k], torch.Tensor):
            data_dict[k] = data_dict[k].cuda()
    point = model.sonata(data_dict)
    while "pooling_parent" in point.keys():
        assert "pooling_inverse" in point.keys()
        parent = point.pop("pooling_parent")
        inverse = point.pop("pooling_inverse")
        parent.feat = torch.cat([parent.feat, point.feat[inverse]], dim=-1)
        point = parent
    feat = point.feat  # [M, 1232]
    feat = model.mlp(feat)  # [M, 512]
    feat = feat[point.inverse]  # [N, 512]
    feats = feat
    return feats


@torch.no_grad()
def get_mask(model, feats, points, point_prompt, iter=1):
    """
    feats: [N, 512]
    points: [N, 3]
    point_prompt: [K, 3]
    """
    point_num = points.shape[0]
    prompt_num = point_prompt.shape[0]
    feats = feats.unsqueeze(1)  # [N, 1, 512]
    feats = feats.repeat(1, prompt_num, 1).cuda()  # [N, K, 512]
    points = torch.from_numpy(points).float().cuda().unsqueeze(1)  # [N, 1, 3]
    points = points.repeat(1, prompt_num, 1)  # [N, K, 3]
    prompt_coord = (
        torch.from_numpy(point_prompt).float().cuda().unsqueeze(0)
    )  # [1, K, 3]
    prompt_coord = prompt_coord.repeat(point_num, 1, 1)  # [N, K, 3]

    feats = feats.transpose(0, 1)  # [K, N, 512]
    points = points.transpose(0, 1)  # [K, N, 3]
    prompt_coord = prompt_coord.transpose(0, 1)  # [K, N, 3]

    mask_1, mask_2, mask_3, pred_iou = model(feats, points, prompt_coord, iter)

    mask_1 = mask_1.transpose(0, 1)  # [N, K]
    mask_2 = mask_2.transpose(0, 1)  # [N, K]
    mask_3 = mask_3.transpose(0, 1)  # [N, K]

    mask_1 = mask_1.detach().cpu().numpy() > 0.5
    mask_2 = mask_2.detach().cpu().numpy() > 0.5
    mask_3 = mask_3.detach().cpu().numpy() > 0.5

    org_iou = pred_iou.detach().cpu().numpy()  # [K, 3]

    return mask_1, mask_2, mask_3, org_iou


def cal_iou(m1, m2):
    return np.sum(np.logical_and(m1, m2)) / np.sum(np.logical_or(m1, m2))


def cal_single_iou(m1, m2):
    return np.sum(np.logical_and(m1, m2)) / np.sum(m1)


def iou_3d(box1, box2, signle=None):
    """
    计算两个三维边界框的交并比 (IoU)

    参数:
        box1 (list): 第一个边界框的坐标 [x1_min, y1_min, z1_min, x1_max, y1_max, z1_max]
        box2 (list): 第二个边界框的坐标 [x2_min, y2_min, z2_min, x2_max, y2_max, z2_max]

    返回:
        float: 交并比 (IoU) 值
    """
    # 计算交集的坐标
    intersection_xmin = max(box1[0], box2[0])
    intersection_ymin = max(box1[1], box2[1])
    intersection_zmin = max(box1[2], box2[2])
    intersection_xmax = min(box1[3], box2[3])
    intersection_ymax = min(box1[4], box2[4])
    intersection_zmax = min(box1[5], box2[5])

    # 判断是否有交集
    if (
        intersection_xmin >= intersection_xmax
        or intersection_ymin >= intersection_ymax
        or intersection_zmin >= intersection_zmax
    ):
        return 0.0  # 无交集

    # 计算交集的体积
    intersection_volume = (
        (intersection_xmax - intersection_xmin)
        * (intersection_ymax - intersection_ymin)
        * (intersection_zmax - intersection_zmin)
    )

    # 计算两个盒子的体积
    box1_volume = (box1[3] - box1[0]) * (box1[4] - box1[1]) * (box1[5] - box1[2])
    box2_volume = (box2[3] - box2[0]) * (box2[4] - box2[1]) * (box2[5] - box2[2])

    if signle is None:
        # 计算并集的体积
        union_volume = box1_volume + box2_volume - intersection_volume
    elif signle == "1":
        union_volume = box1_volume
    elif signle == "2":
        union_volume = box2_volume
    else:
        raise ValueError("signle must be None or 1 or 2")

    # 计算 IoU
    iou = intersection_volume / union_volume if union_volume > 0 else 0.0
    return iou


def cal_point_bbox_iou(p1, p2, signle=None):
    min_p1 = np.min(p1, axis=0)
    max_p1 = np.max(p1, axis=0)
    min_p2 = np.min(p2, axis=0)
    max_p2 = np.max(p2, axis=0)
    box1 = [min_p1[0], min_p1[1], min_p1[2], max_p1[0], max_p1[1], max_p1[2]]
    box2 = [min_p2[0], min_p2[1], min_p2[2], max_p2[0], max_p2[1], max_p2[2]]
    return iou_3d(box1, box2, signle)


def cal_bbox_iou(points, m1, m2):
    p1 = points[m1]
    p2 = points[m2]
    return cal_point_bbox_iou(p1, p2)


def clean_mesh(mesh):
    """
    mesh: trimesh.Trimesh
    """
    # 1. 合并接近的顶点
    mesh.merge_vertices()

    # 2. 删除重复的顶点
    # 3. 删除重复的面片
    mesh.process(True)
    return mesh


def get_aabb_from_face_ids(mesh, face_ids):
    unique_ids = np.unique(face_ids)
    aabb = []
    for i in unique_ids:
        if i == -1 or i == -2:
            continue
        _part_mask = face_ids == i
        _faces = mesh.faces[_part_mask]
        _faces = np.reshape(_faces, (-1))
        _points = mesh.vertices[_faces]
        min_xyz = np.min(_points, axis=0)
        max_xyz = np.max(_points, axis=0)
        aabb.append([min_xyz, max_xyz])
    return np.array(aabb)


class Timer:
    def __init__(self, name):
        self.name = name

    def __enter__(self):
        self.start_time = time.time()
        return self  # 可以返回 self 以便在 with 块内访问

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.end_time = time.time()
        self.elapsed_time = self.end_time - self.start_time
        print(f">>>>>>代码{self.name} 运行时间: {self.elapsed_time:.4f} 秒")


def sample_points_pre_face(vertices, faces, n_point_per_face=2000):
    n_f = faces.shape[0]  # 面片数量

    # 生成随机数 u, v
    u = np.sqrt(np.random.rand(n_f, n_point_per_face, 1))  # (n_f, n_point_per_face, 1)
    v = np.random.rand(n_f, n_point_per_face, 1)  # (n_f, n_point_per_face, 1)

    # 计算 barycentric 坐标
    w0 = 1 - u
    w1 = u * (1 - v)
    w2 = u * v  # (n_f, n_point_per_face, 1)

    # 从顶点中提取每个面的三个顶点
    face_v_0 = vertices[faces[:, 0].reshape(-1)]  # (n_f, 3)
    face_v_1 = vertices[faces[:, 1].reshape(-1)]  # (n_f, 3)
    face_v_2 = vertices[faces[:, 2].reshape(-1)]  # (n_f, 3)

    # 扩展维度以匹配 w0, w1, w2 的形状
    face_v_0 = face_v_0.reshape(n_f, 1, 3)  # (n_f, 1, 3)
    face_v_1 = face_v_1.reshape(n_f, 1, 3)  # (n_f, 1, 3)
    face_v_2 = face_v_2.reshape(n_f, 1, 3)  # (n_f, 1, 3)

    # 计算每个点的坐标
    points = w0 * face_v_0 + w1 * face_v_1 + w2 * face_v_2  # (n_f, n_point_per_face, 3)

    return points


def cal_cd_batch(p1, p2, pn=100000):
    p1_n = p1.shape[0]
    batch_num = (p1_n + pn - 1) // pn
    p2_cuda = torch.from_numpy(p2).cuda().float().unsqueeze(0)
    p1_cuda = torch.from_numpy(p1).cuda().float().unsqueeze(0)
    cd_res = []
    for i in tqdm(range(batch_num)):
        start_idx = i * pn
        end_idx = min((i + 1) * pn, p1_n)
        _p1_cuda = p1_cuda[:, start_idx:end_idx, :]
        _, _, idx, _ = cmd_loss(_p1_cuda, p2_cuda)
        idx = idx[0].detach().cpu().numpy()
        cd_res.append(idx)
    cd_res = np.concatenate(cd_res, axis=0)
    return cd_res


def remove_outliers_iqr(data, factor=1.5):
    """
    基于 IQR 去除离群值
    :param data: 输入的列表或 NumPy 数组
    :param factor: IQR 的倍数(默认 1.5)
    :return: 去除离群值后的列表
    """
    data = np.array(data, dtype=np.float32)
    q1 = np.percentile(data, 25)  # 第一四分位数
    q3 = np.percentile(data, 75)  # 第三四分位数
    iqr = q3 - q1  # 四分位距
    lower_bound = q1 - factor * iqr
    upper_bound = q3 + factor * iqr
    return data[(data >= lower_bound) & (data <= upper_bound)].tolist()


def better_aabb(points):
    x = points[:, 0]
    y = points[:, 1]
    z = points[:, 2]
    x = remove_outliers_iqr(x)
    y = remove_outliers_iqr(y)
    z = remove_outliers_iqr(z)
    min_xyz = np.array([np.min(x), np.min(y), np.min(z)])
    max_xyz = np.array([np.max(x), np.max(y), np.max(z)])
    return [min_xyz, max_xyz]


def save_mesh(save_path, mesh, face_ids, color_map):
    face_colors = np.zeros((len(mesh.faces), 3), dtype=np.uint8)
    for i in tqdm(range(len(mesh.faces)), disable=True):
        _max_id = face_ids[i]
        if _max_id == -2:
            continue
        face_colors[i, :3] = color_map[_max_id]

    mesh_save = trimesh.Trimesh(vertices=mesh.vertices, faces=mesh.faces)
    mesh_save.visual.face_colors = face_colors
    mesh_save.export(save_path)
    mesh_save.export(save_path.replace(".glb", ".ply"))
    # print('保存mesh完成')

    scene_mesh = trimesh.Scene()
    scene_mesh.add_geometry(mesh_save)
    unique_ids = np.unique(face_ids)
    aabb = []
    for i in unique_ids:
        if i == -1 or i == -2:
            continue
        _part_mask = face_ids == i
        _faces = mesh.faces[_part_mask]
        _faces = np.reshape(_faces, (-1))
        _points = mesh.vertices[_faces]
        min_xyz, max_xyz = better_aabb(_points)
        center = (min_xyz + max_xyz) / 2
        size = max_xyz - min_xyz
        box = trimesh.path.creation.box_outline()
        box.vertices *= size
        box.vertices += center
        box_color = np.array([[color_map[i][0], color_map[i][1], color_map[i][2], 255]])
        box_color = np.repeat(box_color, len(box.entities), axis=0).astype(np.uint8)
        box.colors = box_color
        scene_mesh.add_geometry(box)
        min_xyz = np.min(_points, axis=0)
        max_xyz = np.max(_points, axis=0)
        aabb.append([min_xyz, max_xyz])
    scene_mesh.export(save_path.replace(".glb", "_aabb.glb"))
    aabb = np.array(aabb)
    np.save(save_path.replace(".glb", "_aabb.npy"), aabb)
    np.save(save_path.replace(".glb", "_face_ids.npy"), face_ids)


def mesh_sam(
    model,
    mesh,
    save_path,
    point_num=100000,
    prompt_num=400,
    save_mid_res=False,
    show_info=False,
    post_process=False,
    threshold=0.95,
    clean_mesh_flag=True,
    seed=42,
    prompt_bs=32,
):
    with Timer("加载mesh"):
        model, model_parallel = model
        if clean_mesh_flag:
            mesh = clean_mesh(mesh)
        mesh = trimesh.Trimesh(vertices=mesh.vertices, faces=mesh.faces, process=False)
    if show_info:
        print(f"点数:{mesh.vertices.shape[0]} 面片数:{mesh.faces.shape[0]}")

    point_num = 100000
    prompt_num = 400

    with Timer("采样点云"):
        _points, face_idx = trimesh.sample.sample_surface(mesh, point_num, seed=seed)
        _points_org = _points.copy()
        _points = normalize_pc(_points)
        normals = mesh.face_normals[face_idx]
        # _points = _points + np.random.normal(0, 1, size=_points.shape) * 0.01
        # normals = normals * 0. # debug no normal
    if show_info:
        print(f"点数:{point_num} 面片数:{mesh.faces.shape[0]}")

    with Timer("获取特征"):
        _feats = get_feat(model, _points, normals)
    if show_info:
        print("预处理特征")

    if save_mid_res:
        feat_save = _feats.float().detach().cpu().numpy()
        data_scaled = feat_save / np.linalg.norm(feat_save, axis=-1, keepdims=True)
        pca = PCA(n_components=3)
        data_reduced = pca.fit_transform(data_scaled)
        data_reduced = (data_reduced - data_reduced.min()) / (
            data_reduced.max() - data_reduced.min()
        )
        _colors_pca = (data_reduced * 255).astype(np.uint8)
        pc_save = trimesh.points.PointCloud(_points, colors=_colors_pca)
        pc_save.export(os.path.join(save_path, "point_pca.glb"))
        pc_save.export(os.path.join(save_path, "point_pca.ply"))
        if show_info:
            print("PCA获取特征颜色")

    with Timer("FPS采样提示点"):
        fps_idx = fpsample.fps_sampling(_points, prompt_num)
        _point_prompts = _points[fps_idx]
    if save_mid_res:
        trimesh.points.PointCloud(_point_prompts, colors=_colors_pca[fps_idx]).export(
            os.path.join(save_path, "point_prompts_pca.glb")
        )
        trimesh.points.PointCloud(_point_prompts, colors=_colors_pca[fps_idx]).export(
            os.path.join(save_path, "point_prompts_pca.ply")
        )
    if show_info:
        print("采样完成")

    with Timer("推理"):
        bs = prompt_bs
        step_num = prompt_num // bs + 1
        mask_res = []
        iou_res = []
        for i in tqdm(range(step_num), disable=not show_info):
            cur_propmt = _point_prompts[bs * i : bs * (i + 1)]
            pred_mask_1, pred_mask_2, pred_mask_3, pred_iou = get_mask(
                model_parallel, _feats, _points, cur_propmt
            )
            pred_mask = np.stack(
                [pred_mask_1, pred_mask_2, pred_mask_3], axis=-1
            )  # [N, K, 3]
            max_idx = np.argmax(pred_iou, axis=-1)  # [K]
            for j in range(max_idx.shape[0]):
                mask_res.append(pred_mask[:, j, max_idx[j]])
                iou_res.append(pred_iou[j, max_idx[j]])
    mask_res = np.stack(mask_res, axis=-1)  # [N, K]
    if show_info:
        print("prmopt 推理完成")

    with Timer("根据IOU排序"):
        iou_res = np.array(iou_res).tolist()
        mask_iou = [[mask_res[:, i], iou_res[i]] for i in range(prompt_num)]
        mask_iou_sorted = sorted(mask_iou, key=lambda x: x[1], reverse=True)
        mask_sorted = [mask_iou_sorted[i][0] for i in range(prompt_num)]
        iou_sorted = [mask_iou_sorted[i][1] for i in range(prompt_num)]

    # clusters = {}
    # for i in tqdm(range(prompt_num), desc="NMS", disable=not show_info):
    #     _mask = mask_sorted[i]
    #     union_flag = False
    #     for j in clusters.keys():
    #         if cal_iou(_mask, mask_sorted[j]) > 0.9:
    #             clusters[j].append(i)
    #             union_flag = True
    #             break
    #     if not union_flag:
    #         clusters[i] = [i]
    with Timer("NMS"):
        clusters = defaultdict(list)
        with ThreadPoolExecutor(max_workers=20) as executor:
            for i in tqdm(range(prompt_num), desc="NMS", disable=not show_info):
                _mask = mask_sorted[i]
                futures = []
                for j in clusters.keys():
                    futures.append(executor.submit(cal_iou, _mask, mask_sorted[j]))

                for j, future in zip(clusters.keys(), futures):
                    if future.result() > 0.9:
                        clusters[j].append(i)
                        break
                else:
                    clusters[i].append(i)

    # print(clusters)
    if show_info:
        print(f"NMS完成,mask数量:{len(clusters)}")

    if save_mid_res:
        part_mask_save_path = os.path.join(save_path, "part_mask")
        if os.path.exists(part_mask_save_path):
            shutil.rmtree(part_mask_save_path)
        os.makedirs(part_mask_save_path, exist_ok=True)
        for i in tqdm(clusters.keys(), desc="保存mask", disable=not show_info):
            cluster_num = len(clusters[i])
            cluster_iou = iou_sorted[i]
            cluster_area = np.sum(mask_sorted[i])
            if cluster_num <= 2:
                continue
            mask_save = mask_sorted[i]
            mask_save = np.expand_dims(mask_save, axis=-1)
            mask_save = np.repeat(mask_save, 3, axis=-1)
            mask_save = (mask_save * 255).astype(np.uint8)
            point_save = trimesh.points.PointCloud(_points, colors=mask_save)
            point_save.export(
                os.path.join(
                    part_mask_save_path,
                    f"mask_{i}_iou_{cluster_iou:.5f}_area_{cluster_area:.5f}_num_{cluster_num}.glb",
                )
            )

    # 过滤只有一个mask的cluster
    with Timer("过滤只有一个mask的cluster"):
        filtered_clusters = []
        other_clusters = []
        for i in clusters.keys():
            if len(clusters[i]) > 2:
                filtered_clusters.append(i)
            else:
                other_clusters.append(i)
    if show_info:
        print(
            f"过滤前:{len(clusters)} 个cluster,"
            f"过滤后:{len(filtered_clusters)} 个cluster"
        )

    # 再次合并
    with Timer("再次合并"):
        filtered_clusters_num = len(filtered_clusters)
        cluster2 = {}
        is_union = [False] * filtered_clusters_num
        for i in range(filtered_clusters_num):
            if is_union[i]:
                continue
            cur_cluster = filtered_clusters[i]
            cluster2[cur_cluster] = [cur_cluster]
            for j in range(i + 1, filtered_clusters_num):
                if is_union[j]:
                    continue
                tar_cluster = filtered_clusters[j]
                # if cal_single_iou(mask_sorted[tar_cluster], mask_sorted[cur_cluster]) > 0.9:
                # if cal_iou(mask_sorted[tar_cluster], mask_sorted[cur_cluster]) > 0.5:
                if (
                    cal_bbox_iou(
                        _points, mask_sorted[tar_cluster], mask_sorted[cur_cluster]
                    )
                    > 0.5
                ):
                    cluster2[cur_cluster].append(tar_cluster)
                    is_union[j] = True
    if show_info:
        print(f"再次合并,合并数量:{len(cluster2.keys())}")

    with Timer("计算没有mask的点"):
        no_mask = np.ones(point_num)
        for i in cluster2:
            part_mask = mask_sorted[i]
            no_mask[part_mask] = 0
    if show_info:
        print(
            f"{np.sum(no_mask == 1)} 个点没有mask,"
            f" 占比:{np.sum(no_mask == 1) / point_num:.4f}"
        )

    with Timer("修补遗漏mask"):
        # 查询漏掉的mask
        for i in tqdm(range(len(mask_sorted)), desc="漏掉mask", disable=not show_info):
            if i in cluster2:
                continue
            part_mask = mask_sorted[i]
            _iou = cal_single_iou(part_mask, no_mask)
            if _iou > 0.7:
                cluster2[i] = [i]
                no_mask[part_mask] = 0
                if save_mid_res:
                    mask_save = mask_sorted[i]
                    mask_save = np.expand_dims(mask_save, axis=-1)
                    mask_save = np.repeat(mask_save, 3, axis=-1)
                    mask_save = (mask_save * 255).astype(np.uint8)
                    point_save = trimesh.points.PointCloud(_points, colors=mask_save)
                    cluster_iou = iou_sorted[i]
                    cluster_area = int(np.sum(mask_sorted[i]))
                    cluster_num = 1
                    point_save.export(
                        os.path.join(
                            part_mask_save_path,
                            f"mask_{i}_iou_{cluster_iou:.5f}_area_{cluster_area:.5f}_num_{cluster_num}.glb",
                        )
                    )
    # print(cluster2)
    # print(len(cluster2.keys()))
    if show_info:
        print(f"修补遗漏mask:{len(cluster2.keys())}")

    with Timer("计算点云最终mask"):
        final_mask = list(cluster2.keys())
        final_mask_area = [int(np.sum(mask_sorted[i])) for i in final_mask]
        final_mask_area = [
            [final_mask[i], final_mask_area[i]] for i in range(len(final_mask))
        ]
        final_mask_area_sorted = sorted(
            final_mask_area, key=lambda x: x[1], reverse=True
        )
        final_mask_sorted = [
            final_mask_area_sorted[i][0] for i in range(len(final_mask_area))
        ]
        final_mask_area_sorted = [
            final_mask_area_sorted[i][1] for i in range(len(final_mask_area))
        ]
    # print(final_mask_sorted)
    # print(final_mask_area_sorted)
    if show_info:
        print(f"最终mask数量:{len(final_mask_sorted)}")

    with Timer("点云上色"):
        # 生成color map
        color_map = {}
        for i in final_mask_sorted:
            part_color = np.random.rand(3) * 255
            color_map[i] = part_color
        # print(color_map)

        result_mask = -np.ones(point_num, dtype=np.int64)
        for i in final_mask_sorted:
            part_mask = mask_sorted[i]
            result_mask[part_mask] = i
    if save_mid_res:
        # 保存点云结果
        result_colors = np.zeros_like(_colors_pca)
        for i in final_mask_sorted:
            part_color = color_map[i]
            part_mask = mask_sorted[i]
            result_colors[part_mask, :3] = part_color
        trimesh.points.PointCloud(_points, colors=result_colors).export(
            os.path.join(save_path, "auto_mask_cluster.glb")
        )
        trimesh.points.PointCloud(_points, colors=result_colors).export(
            os.path.join(save_path, "auto_mask_cluster.ply")
        )
        if show_info:
            print("保存点云完成")

    with Timer("后处理"):
        valid_mask = result_mask >= 0
        _org = _points_org[valid_mask]
        _results = result_mask[valid_mask]
        pre_face = 10
        _face_points = sample_points_pre_face(
            mesh.vertices, mesh.faces, n_point_per_face=pre_face
        )
        _face_points = np.reshape(_face_points, (len(mesh.faces) * pre_face, 3))
        _idx = cal_cd_batch(_face_points, _org)
        _idx_res = _results[_idx]
        _idx_res = np.reshape(_idx_res, (-1, pre_face))

        face_ids = []
        for i in range(len(mesh.faces)):
            _label = np.argmax(np.bincount(_idx_res[i] + 2)) - 2
            face_ids.append(_label)
        final_face_ids = np.array(face_ids)

    if save_mid_res:
        save_mesh(
            os.path.join(save_path, "auto_mask_mesh_final.glb"),
            mesh,
            final_face_ids,
            color_map,
        )

    with Timer("计算最后的aabb"):
        aabb = get_aabb_from_face_ids(mesh, final_face_ids)
    return aabb, final_face_ids, mesh


class AutoMask:
    def __init__(
        self,
        ckpt_path=None,
        point_num=100000,
        prompt_num=400,
        threshold=0.95,
        post_process=True,
        automask_instance=None,
    ):
        """
        ckpt_path: str, 模型路径
        point_num: int, 采样点数量
        prompt_num: int, 提示数量
        threshold: float, 阈值
        post_process: bool, 是否后处理
        """
        if automask_instance is not None:
            self.model = automask_instance.model
            self.model_parallel = automask_instance.model_parallel
        else:
            self.model = P3SAM()
            self.model.load_state_dict(ckpt_path)
            self.model.eval()
            # self.model_parallel = torch.nn.DataParallel(self.model)
            self.model_parallel = self.model
            self.model.cuda()
            self.model_parallel.cuda()
        self.point_num = point_num
        self.prompt_num = prompt_num
        self.threshold = threshold
        self.post_process = post_process

    def predict_aabb(
        self,
        mesh,
        point_num=None,
        prompt_num=None,
        threshold=None,
        post_process=None,
        save_path=None,
        save_mid_res=False,
        show_info=True,
        clean_mesh_flag=True,
        seed=42,
        is_parallel=True,
        prompt_bs=32,
    ):
        """
        Parameters:
            mesh: trimesh.Trimesh, 输入网格
            point_num: int, 采样点数量
            prompt_num: int, 提示数量
            threshold: float, 阈值
            post_process: bool, 是否后处理
        Returns:
            aabb: np.ndarray, 包围盒
            face_ids: np.ndarray, 面id
        """
        point_num = point_num if point_num is not None else self.point_num
        prompt_num = prompt_num if prompt_num is not None else self.prompt_num
        threshold = threshold if threshold is not None else self.threshold
        post_process = post_process if post_process is not None else self.post_process
        return mesh_sam(
            [self.model, self.model_parallel if is_parallel else self.model],
            mesh,
            save_path=save_path,
            point_num=point_num,
            prompt_num=prompt_num,
            threshold=threshold,
            post_process=post_process,
            show_info=show_info,
            save_mid_res=save_mid_res,
            clean_mesh_flag=clean_mesh_flag,
            seed=seed,
            prompt_bs=prompt_bs,
        )


def set_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False


if __name__ == "__main__":
    argparser = argparse.ArgumentParser()
    argparser.add_argument(
        "--ckpt_path", type=str, default=None, help="模型路径"
    )
    argparser.add_argument(
        "--mesh_path", type=str, default="assets/1.glb", help="输入网格路径"
    )
    argparser.add_argument(
        "--output_path", type=str, default="results/1", help="保存路径"
    )
    argparser.add_argument("--point_num", type=int, default=100000, help="采样点数量")
    argparser.add_argument("--prompt_num", type=int, default=400, help="提示数量")
    argparser.add_argument("--threshold", type=float, default=0.95, help="阈值")
    argparser.add_argument("--post_process", type=int, default=0, help="是否后处理")
    argparser.add_argument(
        "--save_mid_res", type=int, default=1, help="是否保存中间结果"
    )
    argparser.add_argument("--show_info", type=int, default=1, help="是否显示信息")
    argparser.add_argument(
        "--show_time_info", type=int, default=1, help="是否显示时间信息"
    )
    argparser.add_argument("--seed", type=int, default=42, help="随机种子")
    argparser.add_argument("--parallel", type=int, default=1, help="是否使用多卡")
    argparser.add_argument(
        "--prompt_bs", type=int, default=32, help="提示点推理时的batch size大小"
    )
    argparser.add_argument("--clean_mesh", type=int, default=1, help="是否清洗网格")
    args = argparser.parse_args()
    Timer.STATE = args.show_time_info

    output_path = args.output_path
    os.makedirs(output_path, exist_ok=True)
    ckpt_path = args.ckpt_path
    auto_mask = AutoMask(ckpt_path)
    mesh_path = args.mesh_path
    if os.path.isdir(mesh_path):
        for file in os.listdir(mesh_path):
            if not (
                file.endswith(".glb") or file.endswith(".obj") or file.endswith(".ply")
            ):
                continue
            _mesh_path = os.path.join(mesh_path, file)
            _output_path = os.path.join(output_path, file[:-4])
            os.makedirs(_output_path, exist_ok=True)
            mesh = trimesh.load(_mesh_path, force="mesh")
            set_seed(args.seed)
            aabb, face_ids, mesh = auto_mask.predict_aabb(
                mesh,
                save_path=_output_path,
                point_num=args.point_num,
                prompt_num=args.prompt_num,
                threshold=args.threshold,
                post_process=args.post_process,
                save_mid_res=args.save_mid_res,
                show_info=args.show_info,
                seed=args.seed,
                is_parallel=args.parallel,
                clean_mesh_flag=args.clean_mesh,
            )
    else:
        mesh = trimesh.load(mesh_path, force="mesh")
        set_seed(args.seed)
        aabb, face_ids, mesh = auto_mask.predict_aabb(
            mesh,
            save_path=output_path,
            point_num=args.point_num,
            prompt_num=args.prompt_num,
            threshold=args.threshold,
            post_process=args.post_process,
            save_mid_res=args.save_mid_res,
            show_info=args.show_info,
            seed=args.seed,
            is_parallel=args.parallel,
            clean_mesh_flag=args.clean_mesh,
        )

    ###############################################
    ## 可以通过以下代码保存返回的结果
    ## You can save the returned result by the following code
    ################# save result #################
    # color_map = {}
    # unique_ids = np.unique(face_ids)
    # for i in unique_ids:
    #     if i == -1:
    #         continue
    #     part_color = np.random.rand(3) * 255
    #     color_map[i] = part_color
    # face_colors = []
    # for i in face_ids:
    #     if i == -1:
    #         face_colors.append([0, 0, 0])
    #     else:
    #         face_colors.append(color_map[i])
    # face_colors = np.array(face_colors).astype(np.uint8)
    # mesh_save = mesh.copy()
    # mesh_save.visual.face_colors = face_colors
    # mesh_save.export(os.path.join(output_path, 'auto_mask_mesh.glb'))
    # scene_mesh = trimesh.Scene()
    # scene_mesh.add_geometry(mesh_save)
    # for i in range(len(aabb)):
    #     min_xyz, max_xyz = aabb[i]
    #     center = (min_xyz + max_xyz) / 2
    #     size = max_xyz - min_xyz
    #     box = trimesh.path.creation.box_outline()
    #     box.vertices *= size
    #     box.vertices += center
    #     scene_mesh.add_geometry(box)
    # scene_mesh.export(os.path.join(output_path, 'auto_mask_aabb.glb'))
    ################# save result #################

"""
python auto_mask_no_postprocess.py --parallel 0 
python auto_mask_no_postprocess.py --ckpt_path ../weights/p3sam.ckpt --mesh_path assets/1.glb --output_path results/1 --parallel 0 
python auto_mask_no_postprocess.py --ckpt_path ../weights/p3sam.ckpt --mesh_path assets --output_path results/all_no_postprocess 
"""