Hunyuan3D-Part / P3-SAM /demo /auto_mask_no_postprocess.py
root
add our app
7b75adb
raw
history blame
34 kB
import os
import sys
import torch
import torch.nn as nn
import numpy as np
import argparse
import trimesh
from sklearn.decomposition import PCA
import fpsample
from tqdm import tqdm
import threading
import random
# from tqdm.notebook import tqdm
import time
import copy
import shutil
from pathlib import Path
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor, as_completed
from collections import defaultdict
import numba
from numba import njit
sys.path.append("..")
from model import build_P3SAM, load_state_dict
from utils.chamfer3D.dist_chamfer_3D import chamfer_3DDist
cmd_loss = chamfer_3DDist()
class P3SAM(nn.Module):
def __init__(self):
super().__init__()
build_P3SAM(self)
def load_state_dict(self,
ckpt_path=None,
state_dict=None,
strict=True,
assign=False,
ignore_seg_mlp=False,
ignore_seg_s2_mlp=False,
ignore_iou_mlp=False):
load_state_dict(self,
ckpt_path=ckpt_path,
state_dict=state_dict,
strict=strict,
assign=assign,
ignore_seg_mlp=ignore_seg_mlp,
ignore_seg_s2_mlp=ignore_seg_s2_mlp,
ignore_iou_mlp=ignore_iou_mlp)
def forward(self, feats, points, point_prompt, iter=1):
"""
feats: [K, N, 512]
points: [K, N, 3]
point_prompt: [K, N, 3]
"""
# print(feats.shape, points.shape, point_prompt.shape)
point_num = points.shape[1]
feats = feats.transpose(0, 1) # [N, K, 512]
points = points.transpose(0, 1) # [N, K, 3]
point_prompt = point_prompt.transpose(0, 1) # [N, K, 3]
feats_seg = torch.cat([feats, points, point_prompt], dim=-1) # [N, K, 512+3+3]
# 预测mask stage-1
pred_mask_1 = self.seg_mlp_1(feats_seg).squeeze(-1) # [N, K]
pred_mask_2 = self.seg_mlp_2(feats_seg).squeeze(-1) # [N, K]
pred_mask_3 = self.seg_mlp_3(feats_seg).squeeze(-1) # [N, K]
pred_mask = torch.stack(
[pred_mask_1, pred_mask_2, pred_mask_3], dim=-1
) # [N, K, 3]
for _ in range(iter):
# 预测mask stage-2
feats_seg_2 = torch.cat([feats_seg, pred_mask], dim=-1) # [N, K, 512+3+3+3]
feats_seg_global = self.seg_s2_mlp_g(feats_seg_2) # [N, K, 512]
feats_seg_global = torch.max(feats_seg_global, dim=0).values # [K, 512]
feats_seg_global = feats_seg_global.unsqueeze(0).repeat(
point_num, 1, 1
) # [N, K, 512]
feats_seg_3 = torch.cat(
[feats_seg_global, feats_seg_2], dim=-1
) # [N, K, 512+3+3+3+512]
pred_mask_s2_1 = self.seg_s2_mlp_1(feats_seg_3).squeeze(-1) # [N, K]
pred_mask_s2_2 = self.seg_s2_mlp_2(feats_seg_3).squeeze(-1) # [N, K]
pred_mask_s2_3 = self.seg_s2_mlp_3(feats_seg_3).squeeze(-1) # [N, K]
pred_mask_s2 = torch.stack(
[pred_mask_s2_1, pred_mask_s2_2, pred_mask_s2_3], dim=-1
) # [N,, K 3]
pred_mask = pred_mask_s2
mask_1 = torch.sigmoid(pred_mask_s2_1).to(dtype=torch.float32) # [N, K]
mask_2 = torch.sigmoid(pred_mask_s2_2).to(dtype=torch.float32) # [N, K]
mask_3 = torch.sigmoid(pred_mask_s2_3).to(dtype=torch.float32) # [N, K]
feats_iou = torch.cat(
[feats_seg_global, feats_seg, pred_mask_s2], dim=-1
) # [N, K, 512+3+3+3+512]
feats_iou = self.iou_mlp(feats_iou) # [N, K, 512]
feats_iou = torch.max(feats_iou, dim=0).values # [K, 512]
pred_iou = self.iou_mlp_out(feats_iou) # [K, 3]
pred_iou = torch.sigmoid(pred_iou).to(dtype=torch.float32) # [K, 3]
mask_1 = mask_1.transpose(0, 1) # [K, N]
mask_2 = mask_2.transpose(0, 1) # [K, N]
mask_3 = mask_3.transpose(0, 1) # [K, N]
return mask_1, mask_2, mask_3, pred_iou
def normalize_pc(pc):
"""
pc: (N, 3)
"""
max_, min_ = np.max(pc, axis=0), np.min(pc, axis=0)
center = (max_ + min_) / 2
scale = (max_ - min_) / 2
scale = np.max(np.abs(scale))
pc = (pc - center) / (scale + 1e-10)
return pc
@torch.no_grad()
def get_feat(model, points, normals):
data_dict = {
"coord": points,
"normal": normals,
"color": np.ones_like(points),
"batch": np.zeros(points.shape[0], dtype=np.int64),
}
data_dict = model.transform(data_dict)
for k in data_dict:
if isinstance(data_dict[k], torch.Tensor):
data_dict[k] = data_dict[k].cuda()
point = model.sonata(data_dict)
while "pooling_parent" in point.keys():
assert "pooling_inverse" in point.keys()
parent = point.pop("pooling_parent")
inverse = point.pop("pooling_inverse")
parent.feat = torch.cat([parent.feat, point.feat[inverse]], dim=-1)
point = parent
feat = point.feat # [M, 1232]
feat = model.mlp(feat) # [M, 512]
feat = feat[point.inverse] # [N, 512]
feats = feat
return feats
@torch.no_grad()
def get_mask(model, feats, points, point_prompt, iter=1):
"""
feats: [N, 512]
points: [N, 3]
point_prompt: [K, 3]
"""
point_num = points.shape[0]
prompt_num = point_prompt.shape[0]
feats = feats.unsqueeze(1) # [N, 1, 512]
feats = feats.repeat(1, prompt_num, 1).cuda() # [N, K, 512]
points = torch.from_numpy(points).float().cuda().unsqueeze(1) # [N, 1, 3]
points = points.repeat(1, prompt_num, 1) # [N, K, 3]
prompt_coord = (
torch.from_numpy(point_prompt).float().cuda().unsqueeze(0)
) # [1, K, 3]
prompt_coord = prompt_coord.repeat(point_num, 1, 1) # [N, K, 3]
feats = feats.transpose(0, 1) # [K, N, 512]
points = points.transpose(0, 1) # [K, N, 3]
prompt_coord = prompt_coord.transpose(0, 1) # [K, N, 3]
mask_1, mask_2, mask_3, pred_iou = model(feats, points, prompt_coord, iter)
mask_1 = mask_1.transpose(0, 1) # [N, K]
mask_2 = mask_2.transpose(0, 1) # [N, K]
mask_3 = mask_3.transpose(0, 1) # [N, K]
mask_1 = mask_1.detach().cpu().numpy() > 0.5
mask_2 = mask_2.detach().cpu().numpy() > 0.5
mask_3 = mask_3.detach().cpu().numpy() > 0.5
org_iou = pred_iou.detach().cpu().numpy() # [K, 3]
return mask_1, mask_2, mask_3, org_iou
def cal_iou(m1, m2):
return np.sum(np.logical_and(m1, m2)) / np.sum(np.logical_or(m1, m2))
def cal_single_iou(m1, m2):
return np.sum(np.logical_and(m1, m2)) / np.sum(m1)
def iou_3d(box1, box2, signle=None):
"""
计算两个三维边界框的交并比 (IoU)
参数:
box1 (list): 第一个边界框的坐标 [x1_min, y1_min, z1_min, x1_max, y1_max, z1_max]
box2 (list): 第二个边界框的坐标 [x2_min, y2_min, z2_min, x2_max, y2_max, z2_max]
返回:
float: 交并比 (IoU) 值
"""
# 计算交集的坐标
intersection_xmin = max(box1[0], box2[0])
intersection_ymin = max(box1[1], box2[1])
intersection_zmin = max(box1[2], box2[2])
intersection_xmax = min(box1[3], box2[3])
intersection_ymax = min(box1[4], box2[4])
intersection_zmax = min(box1[5], box2[5])
# 判断是否有交集
if (
intersection_xmin >= intersection_xmax
or intersection_ymin >= intersection_ymax
or intersection_zmin >= intersection_zmax
):
return 0.0 # 无交集
# 计算交集的体积
intersection_volume = (
(intersection_xmax - intersection_xmin)
* (intersection_ymax - intersection_ymin)
* (intersection_zmax - intersection_zmin)
)
# 计算两个盒子的体积
box1_volume = (box1[3] - box1[0]) * (box1[4] - box1[1]) * (box1[5] - box1[2])
box2_volume = (box2[3] - box2[0]) * (box2[4] - box2[1]) * (box2[5] - box2[2])
if signle is None:
# 计算并集的体积
union_volume = box1_volume + box2_volume - intersection_volume
elif signle == "1":
union_volume = box1_volume
elif signle == "2":
union_volume = box2_volume
else:
raise ValueError("signle must be None or 1 or 2")
# 计算 IoU
iou = intersection_volume / union_volume if union_volume > 0 else 0.0
return iou
def cal_point_bbox_iou(p1, p2, signle=None):
min_p1 = np.min(p1, axis=0)
max_p1 = np.max(p1, axis=0)
min_p2 = np.min(p2, axis=0)
max_p2 = np.max(p2, axis=0)
box1 = [min_p1[0], min_p1[1], min_p1[2], max_p1[0], max_p1[1], max_p1[2]]
box2 = [min_p2[0], min_p2[1], min_p2[2], max_p2[0], max_p2[1], max_p2[2]]
return iou_3d(box1, box2, signle)
def cal_bbox_iou(points, m1, m2):
p1 = points[m1]
p2 = points[m2]
return cal_point_bbox_iou(p1, p2)
def clean_mesh(mesh):
"""
mesh: trimesh.Trimesh
"""
# 1. 合并接近的顶点
mesh.merge_vertices()
# 2. 删除重复的顶点
# 3. 删除重复的面片
mesh.process(True)
return mesh
def get_aabb_from_face_ids(mesh, face_ids):
unique_ids = np.unique(face_ids)
aabb = []
for i in unique_ids:
if i == -1 or i == -2:
continue
_part_mask = face_ids == i
_faces = mesh.faces[_part_mask]
_faces = np.reshape(_faces, (-1))
_points = mesh.vertices[_faces]
min_xyz = np.min(_points, axis=0)
max_xyz = np.max(_points, axis=0)
aabb.append([min_xyz, max_xyz])
return np.array(aabb)
class Timer:
def __init__(self, name):
self.name = name
def __enter__(self):
self.start_time = time.time()
return self # 可以返回 self 以便在 with 块内访问
def __exit__(self, exc_type, exc_val, exc_tb):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
print(f">>>>>>代码{self.name} 运行时间: {self.elapsed_time:.4f} 秒")
def sample_points_pre_face(vertices, faces, n_point_per_face=2000):
n_f = faces.shape[0] # 面片数量
# 生成随机数 u, v
u = np.sqrt(np.random.rand(n_f, n_point_per_face, 1)) # (n_f, n_point_per_face, 1)
v = np.random.rand(n_f, n_point_per_face, 1) # (n_f, n_point_per_face, 1)
# 计算 barycentric 坐标
w0 = 1 - u
w1 = u * (1 - v)
w2 = u * v # (n_f, n_point_per_face, 1)
# 从顶点中提取每个面的三个顶点
face_v_0 = vertices[faces[:, 0].reshape(-1)] # (n_f, 3)
face_v_1 = vertices[faces[:, 1].reshape(-1)] # (n_f, 3)
face_v_2 = vertices[faces[:, 2].reshape(-1)] # (n_f, 3)
# 扩展维度以匹配 w0, w1, w2 的形状
face_v_0 = face_v_0.reshape(n_f, 1, 3) # (n_f, 1, 3)
face_v_1 = face_v_1.reshape(n_f, 1, 3) # (n_f, 1, 3)
face_v_2 = face_v_2.reshape(n_f, 1, 3) # (n_f, 1, 3)
# 计算每个点的坐标
points = w0 * face_v_0 + w1 * face_v_1 + w2 * face_v_2 # (n_f, n_point_per_face, 3)
return points
def cal_cd_batch(p1, p2, pn=100000):
p1_n = p1.shape[0]
batch_num = (p1_n + pn - 1) // pn
p2_cuda = torch.from_numpy(p2).cuda().float().unsqueeze(0)
p1_cuda = torch.from_numpy(p1).cuda().float().unsqueeze(0)
cd_res = []
for i in tqdm(range(batch_num)):
start_idx = i * pn
end_idx = min((i + 1) * pn, p1_n)
_p1_cuda = p1_cuda[:, start_idx:end_idx, :]
_, _, idx, _ = cmd_loss(_p1_cuda, p2_cuda)
idx = idx[0].detach().cpu().numpy()
cd_res.append(idx)
cd_res = np.concatenate(cd_res, axis=0)
return cd_res
def remove_outliers_iqr(data, factor=1.5):
"""
基于 IQR 去除离群值
:param data: 输入的列表或 NumPy 数组
:param factor: IQR 的倍数(默认 1.5)
:return: 去除离群值后的列表
"""
data = np.array(data, dtype=np.float32)
q1 = np.percentile(data, 25) # 第一四分位数
q3 = np.percentile(data, 75) # 第三四分位数
iqr = q3 - q1 # 四分位距
lower_bound = q1 - factor * iqr
upper_bound = q3 + factor * iqr
return data[(data >= lower_bound) & (data <= upper_bound)].tolist()
def better_aabb(points):
x = points[:, 0]
y = points[:, 1]
z = points[:, 2]
x = remove_outliers_iqr(x)
y = remove_outliers_iqr(y)
z = remove_outliers_iqr(z)
min_xyz = np.array([np.min(x), np.min(y), np.min(z)])
max_xyz = np.array([np.max(x), np.max(y), np.max(z)])
return [min_xyz, max_xyz]
def save_mesh(save_path, mesh, face_ids, color_map):
face_colors = np.zeros((len(mesh.faces), 3), dtype=np.uint8)
for i in tqdm(range(len(mesh.faces)), disable=True):
_max_id = face_ids[i]
if _max_id == -2:
continue
face_colors[i, :3] = color_map[_max_id]
mesh_save = trimesh.Trimesh(vertices=mesh.vertices, faces=mesh.faces)
mesh_save.visual.face_colors = face_colors
mesh_save.export(save_path)
mesh_save.export(save_path.replace(".glb", ".ply"))
# print('保存mesh完成')
scene_mesh = trimesh.Scene()
scene_mesh.add_geometry(mesh_save)
unique_ids = np.unique(face_ids)
aabb = []
for i in unique_ids:
if i == -1 or i == -2:
continue
_part_mask = face_ids == i
_faces = mesh.faces[_part_mask]
_faces = np.reshape(_faces, (-1))
_points = mesh.vertices[_faces]
min_xyz, max_xyz = better_aabb(_points)
center = (min_xyz + max_xyz) / 2
size = max_xyz - min_xyz
box = trimesh.path.creation.box_outline()
box.vertices *= size
box.vertices += center
box_color = np.array([[color_map[i][0], color_map[i][1], color_map[i][2], 255]])
box_color = np.repeat(box_color, len(box.entities), axis=0).astype(np.uint8)
box.colors = box_color
scene_mesh.add_geometry(box)
min_xyz = np.min(_points, axis=0)
max_xyz = np.max(_points, axis=0)
aabb.append([min_xyz, max_xyz])
scene_mesh.export(save_path.replace(".glb", "_aabb.glb"))
aabb = np.array(aabb)
np.save(save_path.replace(".glb", "_aabb.npy"), aabb)
np.save(save_path.replace(".glb", "_face_ids.npy"), face_ids)
def mesh_sam(
model,
mesh,
save_path,
point_num=100000,
prompt_num=400,
save_mid_res=False,
show_info=False,
post_process=False,
threshold=0.95,
clean_mesh_flag=True,
seed=42,
prompt_bs=32,
):
with Timer("加载mesh"):
model, model_parallel = model
if clean_mesh_flag:
mesh = clean_mesh(mesh)
mesh = trimesh.Trimesh(vertices=mesh.vertices, faces=mesh.faces, process=False)
if show_info:
print(f"点数:{mesh.vertices.shape[0]} 面片数:{mesh.faces.shape[0]}")
point_num = 100000
prompt_num = 400
with Timer("采样点云"):
_points, face_idx = trimesh.sample.sample_surface(mesh, point_num, seed=seed)
_points_org = _points.copy()
_points = normalize_pc(_points)
normals = mesh.face_normals[face_idx]
# _points = _points + np.random.normal(0, 1, size=_points.shape) * 0.01
# normals = normals * 0. # debug no normal
if show_info:
print(f"点数:{point_num} 面片数:{mesh.faces.shape[0]}")
with Timer("获取特征"):
_feats = get_feat(model, _points, normals)
if show_info:
print("预处理特征")
if save_mid_res:
feat_save = _feats.float().detach().cpu().numpy()
data_scaled = feat_save / np.linalg.norm(feat_save, axis=-1, keepdims=True)
pca = PCA(n_components=3)
data_reduced = pca.fit_transform(data_scaled)
data_reduced = (data_reduced - data_reduced.min()) / (
data_reduced.max() - data_reduced.min()
)
_colors_pca = (data_reduced * 255).astype(np.uint8)
pc_save = trimesh.points.PointCloud(_points, colors=_colors_pca)
pc_save.export(os.path.join(save_path, "point_pca.glb"))
pc_save.export(os.path.join(save_path, "point_pca.ply"))
if show_info:
print("PCA获取特征颜色")
with Timer("FPS采样提示点"):
fps_idx = fpsample.fps_sampling(_points, prompt_num)
_point_prompts = _points[fps_idx]
if save_mid_res:
trimesh.points.PointCloud(_point_prompts, colors=_colors_pca[fps_idx]).export(
os.path.join(save_path, "point_prompts_pca.glb")
)
trimesh.points.PointCloud(_point_prompts, colors=_colors_pca[fps_idx]).export(
os.path.join(save_path, "point_prompts_pca.ply")
)
if show_info:
print("采样完成")
with Timer("推理"):
bs = prompt_bs
step_num = prompt_num // bs + 1
mask_res = []
iou_res = []
for i in tqdm(range(step_num), disable=not show_info):
cur_propmt = _point_prompts[bs * i : bs * (i + 1)]
pred_mask_1, pred_mask_2, pred_mask_3, pred_iou = get_mask(
model_parallel, _feats, _points, cur_propmt
)
pred_mask = np.stack(
[pred_mask_1, pred_mask_2, pred_mask_3], axis=-1
) # [N, K, 3]
max_idx = np.argmax(pred_iou, axis=-1) # [K]
for j in range(max_idx.shape[0]):
mask_res.append(pred_mask[:, j, max_idx[j]])
iou_res.append(pred_iou[j, max_idx[j]])
mask_res = np.stack(mask_res, axis=-1) # [N, K]
if show_info:
print("prmopt 推理完成")
with Timer("根据IOU排序"):
iou_res = np.array(iou_res).tolist()
mask_iou = [[mask_res[:, i], iou_res[i]] for i in range(prompt_num)]
mask_iou_sorted = sorted(mask_iou, key=lambda x: x[1], reverse=True)
mask_sorted = [mask_iou_sorted[i][0] for i in range(prompt_num)]
iou_sorted = [mask_iou_sorted[i][1] for i in range(prompt_num)]
# clusters = {}
# for i in tqdm(range(prompt_num), desc="NMS", disable=not show_info):
# _mask = mask_sorted[i]
# union_flag = False
# for j in clusters.keys():
# if cal_iou(_mask, mask_sorted[j]) > 0.9:
# clusters[j].append(i)
# union_flag = True
# break
# if not union_flag:
# clusters[i] = [i]
with Timer("NMS"):
clusters = defaultdict(list)
with ThreadPoolExecutor(max_workers=20) as executor:
for i in tqdm(range(prompt_num), desc="NMS", disable=not show_info):
_mask = mask_sorted[i]
futures = []
for j in clusters.keys():
futures.append(executor.submit(cal_iou, _mask, mask_sorted[j]))
for j, future in zip(clusters.keys(), futures):
if future.result() > 0.9:
clusters[j].append(i)
break
else:
clusters[i].append(i)
# print(clusters)
if show_info:
print(f"NMS完成,mask数量:{len(clusters)}")
if save_mid_res:
part_mask_save_path = os.path.join(save_path, "part_mask")
if os.path.exists(part_mask_save_path):
shutil.rmtree(part_mask_save_path)
os.makedirs(part_mask_save_path, exist_ok=True)
for i in tqdm(clusters.keys(), desc="保存mask", disable=not show_info):
cluster_num = len(clusters[i])
cluster_iou = iou_sorted[i]
cluster_area = np.sum(mask_sorted[i])
if cluster_num <= 2:
continue
mask_save = mask_sorted[i]
mask_save = np.expand_dims(mask_save, axis=-1)
mask_save = np.repeat(mask_save, 3, axis=-1)
mask_save = (mask_save * 255).astype(np.uint8)
point_save = trimesh.points.PointCloud(_points, colors=mask_save)
point_save.export(
os.path.join(
part_mask_save_path,
f"mask_{i}_iou_{cluster_iou:.5f}_area_{cluster_area:.5f}_num_{cluster_num}.glb",
)
)
# 过滤只有一个mask的cluster
with Timer("过滤只有一个mask的cluster"):
filtered_clusters = []
other_clusters = []
for i in clusters.keys():
if len(clusters[i]) > 2:
filtered_clusters.append(i)
else:
other_clusters.append(i)
if show_info:
print(
f"过滤前:{len(clusters)} 个cluster,"
f"过滤后:{len(filtered_clusters)} 个cluster"
)
# 再次合并
with Timer("再次合并"):
filtered_clusters_num = len(filtered_clusters)
cluster2 = {}
is_union = [False] * filtered_clusters_num
for i in range(filtered_clusters_num):
if is_union[i]:
continue
cur_cluster = filtered_clusters[i]
cluster2[cur_cluster] = [cur_cluster]
for j in range(i + 1, filtered_clusters_num):
if is_union[j]:
continue
tar_cluster = filtered_clusters[j]
# if cal_single_iou(mask_sorted[tar_cluster], mask_sorted[cur_cluster]) > 0.9:
# if cal_iou(mask_sorted[tar_cluster], mask_sorted[cur_cluster]) > 0.5:
if (
cal_bbox_iou(
_points, mask_sorted[tar_cluster], mask_sorted[cur_cluster]
)
> 0.5
):
cluster2[cur_cluster].append(tar_cluster)
is_union[j] = True
if show_info:
print(f"再次合并,合并数量:{len(cluster2.keys())}")
with Timer("计算没有mask的点"):
no_mask = np.ones(point_num)
for i in cluster2:
part_mask = mask_sorted[i]
no_mask[part_mask] = 0
if show_info:
print(
f"{np.sum(no_mask == 1)} 个点没有mask,"
f" 占比:{np.sum(no_mask == 1) / point_num:.4f}"
)
with Timer("修补遗漏mask"):
# 查询漏掉的mask
for i in tqdm(range(len(mask_sorted)), desc="漏掉mask", disable=not show_info):
if i in cluster2:
continue
part_mask = mask_sorted[i]
_iou = cal_single_iou(part_mask, no_mask)
if _iou > 0.7:
cluster2[i] = [i]
no_mask[part_mask] = 0
if save_mid_res:
mask_save = mask_sorted[i]
mask_save = np.expand_dims(mask_save, axis=-1)
mask_save = np.repeat(mask_save, 3, axis=-1)
mask_save = (mask_save * 255).astype(np.uint8)
point_save = trimesh.points.PointCloud(_points, colors=mask_save)
cluster_iou = iou_sorted[i]
cluster_area = int(np.sum(mask_sorted[i]))
cluster_num = 1
point_save.export(
os.path.join(
part_mask_save_path,
f"mask_{i}_iou_{cluster_iou:.5f}_area_{cluster_area:.5f}_num_{cluster_num}.glb",
)
)
# print(cluster2)
# print(len(cluster2.keys()))
if show_info:
print(f"修补遗漏mask:{len(cluster2.keys())}")
with Timer("计算点云最终mask"):
final_mask = list(cluster2.keys())
final_mask_area = [int(np.sum(mask_sorted[i])) for i in final_mask]
final_mask_area = [
[final_mask[i], final_mask_area[i]] for i in range(len(final_mask))
]
final_mask_area_sorted = sorted(
final_mask_area, key=lambda x: x[1], reverse=True
)
final_mask_sorted = [
final_mask_area_sorted[i][0] for i in range(len(final_mask_area))
]
final_mask_area_sorted = [
final_mask_area_sorted[i][1] for i in range(len(final_mask_area))
]
# print(final_mask_sorted)
# print(final_mask_area_sorted)
if show_info:
print(f"最终mask数量:{len(final_mask_sorted)}")
with Timer("点云上色"):
# 生成color map
color_map = {}
for i in final_mask_sorted:
part_color = np.random.rand(3) * 255
color_map[i] = part_color
# print(color_map)
result_mask = -np.ones(point_num, dtype=np.int64)
for i in final_mask_sorted:
part_mask = mask_sorted[i]
result_mask[part_mask] = i
if save_mid_res:
# 保存点云结果
result_colors = np.zeros_like(_colors_pca)
for i in final_mask_sorted:
part_color = color_map[i]
part_mask = mask_sorted[i]
result_colors[part_mask, :3] = part_color
trimesh.points.PointCloud(_points, colors=result_colors).export(
os.path.join(save_path, "auto_mask_cluster.glb")
)
trimesh.points.PointCloud(_points, colors=result_colors).export(
os.path.join(save_path, "auto_mask_cluster.ply")
)
if show_info:
print("保存点云完成")
with Timer("后处理"):
valid_mask = result_mask >= 0
_org = _points_org[valid_mask]
_results = result_mask[valid_mask]
pre_face = 10
_face_points = sample_points_pre_face(
mesh.vertices, mesh.faces, n_point_per_face=pre_face
)
_face_points = np.reshape(_face_points, (len(mesh.faces) * pre_face, 3))
_idx = cal_cd_batch(_face_points, _org)
_idx_res = _results[_idx]
_idx_res = np.reshape(_idx_res, (-1, pre_face))
face_ids = []
for i in range(len(mesh.faces)):
_label = np.argmax(np.bincount(_idx_res[i] + 2)) - 2
face_ids.append(_label)
final_face_ids = np.array(face_ids)
if save_mid_res:
save_mesh(
os.path.join(save_path, "auto_mask_mesh_final.glb"),
mesh,
final_face_ids,
color_map,
)
with Timer("计算最后的aabb"):
aabb = get_aabb_from_face_ids(mesh, final_face_ids)
return aabb, final_face_ids, mesh
class AutoMask:
def __init__(
self,
ckpt_path=None,
point_num=100000,
prompt_num=400,
threshold=0.95,
post_process=True,
automask_instance=None,
):
"""
ckpt_path: str, 模型路径
point_num: int, 采样点数量
prompt_num: int, 提示数量
threshold: float, 阈值
post_process: bool, 是否后处理
"""
if automask_instance is not None:
self.model = automask_instance.model
self.model_parallel = automask_instance.model_parallel
else:
self.model = P3SAM()
self.model.load_state_dict(ckpt_path)
self.model.eval()
self.model_parallel = torch.nn.DataParallel(self.model)
self.model.cuda()
self.model_parallel.cuda()
self.point_num = point_num
self.prompt_num = prompt_num
self.threshold = threshold
self.post_process = post_process
def predict_aabb(
self,
mesh,
point_num=None,
prompt_num=None,
threshold=None,
post_process=None,
save_path=None,
save_mid_res=False,
show_info=True,
clean_mesh_flag=True,
seed=42,
is_parallel=True,
prompt_bs=32,
):
"""
Parameters:
mesh: trimesh.Trimesh, 输入网格
point_num: int, 采样点数量
prompt_num: int, 提示数量
threshold: float, 阈值
post_process: bool, 是否后处理
Returns:
aabb: np.ndarray, 包围盒
face_ids: np.ndarray, 面id
"""
point_num = point_num if point_num is not None else self.point_num
prompt_num = prompt_num if prompt_num is not None else self.prompt_num
threshold = threshold if threshold is not None else self.threshold
post_process = post_process if post_process is not None else self.post_process
return mesh_sam(
[self.model, self.model_parallel if is_parallel else self.model],
mesh,
save_path=save_path,
point_num=point_num,
prompt_num=prompt_num,
threshold=threshold,
post_process=post_process,
show_info=show_info,
save_mid_res=save_mid_res,
clean_mesh_flag=clean_mesh_flag,
seed=seed,
prompt_bs=prompt_bs,
)
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if __name__ == "__main__":
argparser = argparse.ArgumentParser()
argparser.add_argument(
"--ckpt_path", type=str, default=None, help="模型路径"
)
argparser.add_argument(
"--mesh_path", type=str, default="assets/1.glb", help="输入网格路径"
)
argparser.add_argument(
"--output_path", type=str, default="results/1", help="保存路径"
)
argparser.add_argument("--point_num", type=int, default=100000, help="采样点数量")
argparser.add_argument("--prompt_num", type=int, default=400, help="提示数量")
argparser.add_argument("--threshold", type=float, default=0.95, help="阈值")
argparser.add_argument("--post_process", type=int, default=0, help="是否后处理")
argparser.add_argument(
"--save_mid_res", type=int, default=1, help="是否保存中间结果"
)
argparser.add_argument("--show_info", type=int, default=1, help="是否显示信息")
argparser.add_argument(
"--show_time_info", type=int, default=1, help="是否显示时间信息"
)
argparser.add_argument("--seed", type=int, default=42, help="随机种子")
argparser.add_argument("--parallel", type=int, default=1, help="是否使用多卡")
argparser.add_argument(
"--prompt_bs", type=int, default=32, help="提示点推理时的batch size大小"
)
argparser.add_argument("--clean_mesh", type=int, default=1, help="是否清洗网格")
args = argparser.parse_args()
Timer.STATE = args.show_time_info
output_path = args.output_path
os.makedirs(output_path, exist_ok=True)
ckpt_path = args.ckpt_path
auto_mask = AutoMask(ckpt_path)
mesh_path = args.mesh_path
if os.path.isdir(mesh_path):
for file in os.listdir(mesh_path):
if not (
file.endswith(".glb") or file.endswith(".obj") or file.endswith(".ply")
):
continue
_mesh_path = os.path.join(mesh_path, file)
_output_path = os.path.join(output_path, file[:-4])
os.makedirs(_output_path, exist_ok=True)
mesh = trimesh.load(_mesh_path, force="mesh")
set_seed(args.seed)
aabb, face_ids, mesh = auto_mask.predict_aabb(
mesh,
save_path=_output_path,
point_num=args.point_num,
prompt_num=args.prompt_num,
threshold=args.threshold,
post_process=args.post_process,
save_mid_res=args.save_mid_res,
show_info=args.show_info,
seed=args.seed,
is_parallel=args.parallel,
clean_mesh_flag=args.clean_mesh,
)
else:
mesh = trimesh.load(mesh_path, force="mesh")
set_seed(args.seed)
aabb, face_ids, mesh = auto_mask.predict_aabb(
mesh,
save_path=output_path,
point_num=args.point_num,
prompt_num=args.prompt_num,
threshold=args.threshold,
post_process=args.post_process,
save_mid_res=args.save_mid_res,
show_info=args.show_info,
seed=args.seed,
is_parallel=args.parallel,
clean_mesh_flag=args.clean_mesh,
)
###############################################
## 可以通过以下代码保存返回的结果
## You can save the returned result by the following code
################# save result #################
# color_map = {}
# unique_ids = np.unique(face_ids)
# for i in unique_ids:
# if i == -1:
# continue
# part_color = np.random.rand(3) * 255
# color_map[i] = part_color
# face_colors = []
# for i in face_ids:
# if i == -1:
# face_colors.append([0, 0, 0])
# else:
# face_colors.append(color_map[i])
# face_colors = np.array(face_colors).astype(np.uint8)
# mesh_save = mesh.copy()
# mesh_save.visual.face_colors = face_colors
# mesh_save.export(os.path.join(output_path, 'auto_mask_mesh.glb'))
# scene_mesh = trimesh.Scene()
# scene_mesh.add_geometry(mesh_save)
# for i in range(len(aabb)):
# min_xyz, max_xyz = aabb[i]
# center = (min_xyz + max_xyz) / 2
# size = max_xyz - min_xyz
# box = trimesh.path.creation.box_outline()
# box.vertices *= size
# box.vertices += center
# scene_mesh.add_geometry(box)
# scene_mesh.export(os.path.join(output_path, 'auto_mask_aabb.glb'))
################# save result #################
"""
python auto_mask_no_postprocess.py --parallel 0
python auto_mask_no_postprocess.py --ckpt_path ../weights/p3sam.ckpt --mesh_path assets/1.glb --output_path results/1 --parallel 0
python auto_mask_no_postprocess.py --ckpt_path ../weights/p3sam.ckpt --mesh_path assets --output_path results/all_no_postprocess
"""