root
add our app
7b75adb
raw
history blame
10.9 kB
import torch
import torch.nn as nn
from .. import sonata
from typing import Dict, Union, Optional
from pathlib import Path
class SonataFeatureExtractor(nn.Module):
"""
Feature extractor using Sonata backbone with MLP projection.
Supports batch processing and gradient computation.
"""
def __init__(
self,
ckpt_path: Optional[str] = "",
):
super().__init__()
# Load Sonata model
self.sonata = sonata.load_by_config(
str(Path(__file__).parent.parent.parent / "config" / "sonata.json")
)
# Store original dtype for later reference
# self._original_dtype = next(self.parameters()).dtype
# Define MLP projection head (same as in train-sonata.py)
self.mlp = nn.Sequential(
nn.Linear(1232, 512),
nn.GELU(),
nn.Linear(512, 512),
nn.GELU(),
nn.Linear(512, 512),
)
# Define transform
self.transform = sonata.transform.default()
# Load checkpoint if provided
if ckpt_path:
self.load_checkpoint(ckpt_path)
def load_checkpoint(self, checkpoint_path: str):
"""Load model weights from checkpoint."""
checkpoint = torch.load(checkpoint_path, map_location="cpu")
# Extract state dict from Lightning checkpoint
if "state_dict" in checkpoint:
state_dict = checkpoint["state_dict"]
# Remove 'model.' prefix if present from Lightning
state_dict = {k.replace("model.", ""): v for k, v in state_dict.items()}
else:
state_dict = checkpoint
# Debug: Show all keys in checkpoint
print("\n=== Checkpoint Keys ===")
print(f"Total keys in checkpoint: {len(state_dict)}")
print("\nSample keys:")
for i, key in enumerate(list(state_dict.keys())[:10]):
print(f" {key}")
if len(state_dict) > 10:
print(f" ... and {len(state_dict) - 10} more keys")
# Load only the relevant weights
sonata_dict = {
k.replace("sonata.", ""): v
for k, v in state_dict.items()
if k.startswith("sonata.")
}
mlp_dict = {
k.replace("mlp.", ""): v
for k, v in state_dict.items()
if k.startswith("mlp.")
}
print(f"\nFound {len(sonata_dict)} Sonata keys")
print(f"Found {len(mlp_dict)} MLP keys")
# Load Sonata weights and show missing/unexpected keys
if sonata_dict:
print("\n=== Loading Sonata Weights ===")
result = self.sonata.load_state_dict(sonata_dict, strict=False)
if result.missing_keys:
print(f"\nMissing keys ({len(result.missing_keys)}):")
for key in result.missing_keys[:20]: # Show first 20
print(f" - {key}")
if len(result.missing_keys) > 20:
print(f" ... and {len(result.missing_keys) - 20} more")
else:
print("No missing keys!")
if result.unexpected_keys:
print(f"\nUnexpected keys ({len(result.unexpected_keys)}):")
for key in result.unexpected_keys[:20]: # Show first 20
print(f" - {key}")
if len(result.unexpected_keys) > 20:
print(f" ... and {len(result.unexpected_keys) - 20} more")
else:
print("No unexpected keys!")
# Load MLP weights
if mlp_dict:
print("\n=== Loading MLP Weights ===")
result = self.mlp.load_state_dict(mlp_dict, strict=False)
if result.missing_keys:
print(f"\nMissing keys: {result.missing_keys}")
if result.unexpected_keys:
print(f"Unexpected keys: {result.unexpected_keys}")
print("MLP weights loaded successfully!")
print(f"\n✓ Loaded checkpoint from {checkpoint_path}")
def prepare_batch_data(
self, points: torch.Tensor, normals: Optional[torch.Tensor] = None
) -> Dict:
"""
Prepare batch data for Sonata model.
Args:
points: [B, N, 3] or [N, 3] tensor of point coordinates
normals: [B, N, 3] or [N, 3] tensor of normals (optional)
Returns:
Dictionary formatted for Sonata input
"""
# Handle single batch case
if points.dim() == 2:
points = points.unsqueeze(0)
if normals is not None:
normals = normals.unsqueeze(0)
# print('Sonata points shape: ', points.shape)
B, N, _ = points.shape
# Prepare batch indices
batch_idx = torch.arange(B).view(-1, 1).repeat(1, N).reshape(-1)
# Flatten points for Sonata format
coord = points.reshape(B * N, 3)
if normals is not None:
normal = normals.reshape(B * N, 3)
else:
# Generate dummy normals if not provided
normal = torch.ones_like(coord)
# Generate dummy colors
color = torch.ones_like(coord)
# Function to convert tensor to numpy array, handling BFloat16
def to_numpy(tensor):
# First convert to CPU if needed
if tensor.is_cuda:
tensor = tensor.cpu()
# Convert BFloat16 or other unsupported dtypes to float32
if tensor.dtype not in [
torch.float32,
torch.float64,
torch.int32,
torch.int64,
torch.uint8,
torch.int8,
torch.int16,
]:
tensor = tensor.to(torch.float32)
# Then convert to numpy
return tensor.numpy()
# Create data dict
data_dict = {
"coord": to_numpy(coord),
"normal": to_numpy(normal),
"color": to_numpy(color),
"batch": to_numpy(batch_idx),
}
# Apply transform
data_dict = self.transform(data_dict)
return data_dict, B, N
def forward(
self, points: torch.Tensor, normals: Optional[torch.Tensor] = None
) -> torch.Tensor:
"""
Extract features from point clouds.
Args:
points: [B, N, 3] or [N, 3] tensor of point coordinates
normals: [B, N, 3] or [N, 3] tensor of normals (optional)
Returns:
features: [B, N, 512] or [N, 512] tensor of features
"""
# Store original shape
original_shape = points.shape
single_batch = points.dim() == 2
# Prepare data for Sonata
data_dict, B, N = self.prepare_batch_data(points, normals)
# Move to GPU if needed and convert to appropriate dtype
device = points.device
dtype = points.dtype
# Make sure the entire model is in the correct dtype
# if dtype != self._original_dtype:
# self.to(dtype)
# self._original_dtype = dtype
for key in data_dict.keys():
if isinstance(data_dict[key], torch.Tensor):
# Convert tensors to the right device and dtype if they're floating point
if data_dict[key].is_floating_point():
data_dict[key] = data_dict[key].to(device=device, dtype=dtype)
else:
# For integer tensors, just move to device without changing dtype
data_dict[key] = data_dict[key].to(device)
# Extract Sonata features
point = self.sonata(data_dict)
# Handle pooling layers (same as in train-sonata.py)
while "pooling_parent" in point.keys():
assert "pooling_inverse" in point.keys()
parent = point.pop("pooling_parent")
inverse = point.pop("pooling_inverse")
parent.feat = torch.cat([parent.feat, point.feat[inverse]], dim=-1)
point = parent
# Get features and apply MLP
feat = point.feat # [M, 1232]
feat = self.mlp(feat) # [M, 512]
# Map back to original points
feat = feat[point.inverse] # [B*N, 512]
# Reshape to batch format
feat = feat.reshape(B, -1, feat.shape[-1]) # [B, N, 512]
# Return in original format
if single_batch:
feat = feat.squeeze(0) # [N, 512]
return feat
def extract_features_batch(
self,
points_list: list,
normals_list: Optional[list] = None,
batch_size: int = 8,
) -> list:
"""
Extract features for multiple point clouds in batches.
Args:
points_list: List of [N_i, 3] tensors
normals_list: List of [N_i, 3] tensors (optional)
batch_size: Batch size for processing
Returns:
List of [N_i, 512] feature tensors
"""
features_list = []
# Process in batches
for i in range(0, len(points_list), batch_size):
batch_points = points_list[i : i + batch_size]
batch_normals = normals_list[i : i + batch_size] if normals_list else None
# Find max points in batch
max_n = max(p.shape[0] for p in batch_points)
# Pad to same size
padded_points = []
masks = []
for points in batch_points:
n = points.shape[0]
if n < max_n:
padding = torch.zeros(max_n - n, 3, device=points.device)
points = torch.cat([points, padding], dim=0)
padded_points.append(points)
mask = torch.zeros(max_n, dtype=torch.bool, device=points.device)
mask[:n] = True
masks.append(mask)
# Stack batch
batch_tensor = torch.stack(padded_points) # [B, max_n, 3]
# Handle normals similarly if provided
if batch_normals:
padded_normals = []
for j, normals in enumerate(batch_normals):
n = normals.shape[0]
if n < max_n:
padding = torch.ones(max_n - n, 3, device=normals.device)
normals = torch.cat([normals, padding], dim=0)
padded_normals.append(normals)
normals_tensor = torch.stack(padded_normals)
else:
normals_tensor = None
# Extract features
with torch.cuda.amp.autocast(enabled=True):
batch_features = self.forward(
batch_tensor, normals_tensor
) # [B, max_n, 512]
# Unpad and add to results
for j, (feat, mask) in enumerate(zip(batch_features, masks)):
features_list.append(feat[mask])
return features_list