root
add our app
7b75adb
raw
history blame
3.46 kB
# This file includes code derived from the SiT project (https://github.com/willisma/SiT),
# which is licensed under the MIT License.
#
# MIT License
#
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from .transport import Transport, ModelType, WeightType, PathType, Sampler
def create_transport(
path_type='Linear',
prediction="velocity",
loss_weight=None,
train_eps=None,
sample_eps=None,
train_sample_type="uniform",
mean = 0.0,
std = 1.0,
shift_scale = 1.0,
):
"""function for creating Transport object
**Note**: model prediction defaults to velocity
Args:
- path_type: type of path to use; default to linear
- learn_score: set model prediction to score
- learn_noise: set model prediction to noise
- velocity_weighted: weight loss by velocity weight
- likelihood_weighted: weight loss by likelihood weight
- train_eps: small epsilon for avoiding instability during training
- sample_eps: small epsilon for avoiding instability during sampling
"""
if prediction == "noise":
model_type = ModelType.NOISE
elif prediction == "score":
model_type = ModelType.SCORE
else:
model_type = ModelType.VELOCITY
if loss_weight == "velocity":
loss_type = WeightType.VELOCITY
elif loss_weight == "likelihood":
loss_type = WeightType.LIKELIHOOD
else:
loss_type = WeightType.NONE
path_choice = {
"Linear": PathType.LINEAR,
"GVP": PathType.GVP,
"VP": PathType.VP,
}
path_type = path_choice[path_type]
if (path_type in [PathType.VP]):
train_eps = 1e-5 if train_eps is None else train_eps
sample_eps = 1e-3 if train_eps is None else sample_eps
elif (path_type in [PathType.GVP, PathType.LINEAR] and model_type != ModelType.VELOCITY):
train_eps = 1e-3 if train_eps is None else train_eps
sample_eps = 1e-3 if train_eps is None else sample_eps
else: # velocity & [GVP, LINEAR] is stable everywhere
train_eps = 0
sample_eps = 0
# create flow state
state = Transport(
model_type=model_type,
path_type=path_type,
loss_type=loss_type,
train_eps=train_eps,
sample_eps=sample_eps,
train_sample_type=train_sample_type,
mean=mean,
std=std,
shift_scale =shift_scale,
)
return state