root
add our app
7b75adb
raw
history blame
6.43 kB
import os
import torch
import logging
import importlib
from typing import Union
from functools import wraps
from omegaconf import OmegaConf, DictConfig, ListConfig
def get_logger(name):
logger = logging.getLogger(name)
logger.setLevel(logging.INFO)
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
formatter = logging.Formatter(
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
return logger
logger = get_logger("hy3dgen.partgen")
class synchronize_timer:
"""Synchronized timer to count the inference time of `nn.Module.forward`.
Supports both context manager and decorator usage.
Example as context manager:
```python
with synchronize_timer('name') as t:
run()
```
Example as decorator:
```python
@synchronize_timer('Export to trimesh')
def export_to_trimesh(mesh_output):
pass
```
"""
def __init__(self, name=None):
self.name = name
def __enter__(self):
"""Context manager entry: start timing."""
if os.environ.get("HY3DGEN_DEBUG", "0") == "1":
self.start = torch.cuda.Event(enable_timing=True)
self.end = torch.cuda.Event(enable_timing=True)
self.start.record()
return lambda: self.time
def __exit__(self, exc_type, exc_value, exc_tb):
"""Context manager exit: stop timing and log results."""
if os.environ.get("HY3DGEN_DEBUG", "0") == "1":
self.end.record()
torch.cuda.synchronize()
self.time = self.start.elapsed_time(self.end)
if self.name is not None:
logger.info(f"{self.name} takes {self.time} ms")
def __call__(self, func):
"""Decorator: wrap the function to time its execution."""
@wraps(func)
def wrapper(*args, **kwargs):
with self:
result = func(*args, **kwargs)
return result
return wrapper
def get_config_from_file(config_file: str) -> Union[DictConfig, ListConfig]:
config_file = OmegaConf.load(config_file)
if "base_config" in config_file.keys():
if config_file["base_config"] == "default_base":
base_config = OmegaConf.create()
# base_config = get_default_config()
elif config_file["base_config"].endswith(".yaml"):
base_config = get_config_from_file(config_file["base_config"])
else:
raise ValueError(
f"{config_file} must be `.yaml` file or it contains `base_config` key."
)
config_file = {key: value for key, value in config_file if key != "base_config"}
return OmegaConf.merge(base_config, config_file)
return config_file
def get_obj_from_str(string, reload=False):
module, cls = string.rsplit(".", 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
def instantiate_from_config(config, **kwargs):
if "target" not in config:
raise KeyError("Expected key `target` to instantiate.")
cls = get_obj_from_str(config["target"])
if config.get("from_pretrained", None):
return cls.from_pretrained(
config["from_pretrained"],
use_safetensors=config.get("use_safetensors", False),
variant=config.get("variant", "fp16"),
)
params = config.get("params", dict())
# params.update(kwargs)
# instance = cls(**params)
kwargs.update(params)
instance = cls(**kwargs)
return instance
def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self
def instantiate_non_trainable_model(config):
model = instantiate_from_config(config)
model = model.eval()
model.train = disabled_train
for param in model.parameters():
param.requires_grad = False
return model
def smart_load_model(
model_path,
):
original_model_path = model_path
# try local path
base_dir = os.environ.get("HY3DGEN_MODELS", "~/.cache/xpart")
model_fld = os.path.expanduser(os.path.join(base_dir, model_path))
logger.info(f"Try to load model from local path: {model_path}")
if not os.path.exists(model_path):
logger.info("Model path not exists, try to download from huggingface")
try:
from huggingface_hub import snapshot_download
# 只下载指定子目录
path = snapshot_download(
repo_id=original_model_path,
# allow_patterns=[f"{subfolder}/*"], # 关键修改:模式匹配子文件夹
local_dir=model_fld,
)
model_path = path # os.path.join(path, subfolder) # 保持路径拼接逻辑不变
except ImportError:
logger.warning(
"You need to install HuggingFace Hub to load models from the hub."
)
raise RuntimeError(f"Model path {model_path} not found")
except Exception as e:
raise e
if not os.path.exists(model_path):
raise FileNotFoundError(f"Model path {original_model_path} not found")
return model_path
def init_from_ckpt(model, ckpt, prefix="model", ignore_keys=()):
if "state_dict" not in ckpt:
# deepspeed ckpt
state_dict = {}
ckpt = ckpt["module"] if "module" in ckpt else ckpt
for k in ckpt.keys():
new_k = k.replace("_forward_module.", "")
state_dict[new_k] = ckpt[k]
else:
state_dict = ckpt["state_dict"]
keys = list(state_dict.keys())
for k in keys:
for ik in ignore_keys:
if ik in k:
print("Deleting key {} from state_dict.".format(k))
del state_dict[k]
state_dict = {
k.replace(prefix + ".", ""): v
for k, v in state_dict.items()
if k.startswith(prefix)
}
missing, unexpected = model.load_state_dict(state_dict, strict=False)
print(f"Restored with {len(missing)} missing and {len(unexpected)} unexpected keys")
if len(missing) > 0:
print(f"Missing Keys: {missing}")
print(f"Unexpected Keys: {unexpected}")