""" 3D point cloud augmentation Author: Xiaoyang Wu (xiaoyang.wu.cs@gmail.com) Please cite our work if the code is helpful to you. """ # Copyright (c) Meta Platforms, Inc. and affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright (c) Meta Platforms, Inc. and affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright (c) Meta Platforms, Inc. and affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright (c) Meta Platforms, Inc. and affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright (c) Meta Platforms, Inc. and affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import numbers import scipy import scipy.ndimage import scipy.interpolate import scipy.stats import numpy as np import torch import copy from collections.abc import Sequence, Mapping from .registry import Registry TRANSFORMS = Registry("transforms") def index_operator(data_dict, index, duplicate=False): # index selection operator for keys in "index_valid_keys" # custom these keys by "Update" transform in config if "index_valid_keys" not in data_dict: data_dict["index_valid_keys"] = [ "coord", "color", "normal", "strength", "segment", "instance", ] if not duplicate: for key in data_dict["index_valid_keys"]: if key in data_dict: data_dict[key] = data_dict[key][index] return data_dict else: data_dict_ = dict() for key in data_dict.keys(): if key in data_dict["index_valid_keys"]: data_dict_[key] = data_dict[key][index] else: data_dict_[key] = data_dict[key] return data_dict_ @TRANSFORMS.register_module() class Collect(object): def __init__(self, keys, offset_keys_dict=None, **kwargs): """ e.g. Collect(keys=[coord], feat_keys=[coord, color]) """ if offset_keys_dict is None: offset_keys_dict = dict(offset="coord") self.keys = keys self.offset_keys = offset_keys_dict self.kwargs = kwargs def __call__(self, data_dict): data = dict() if isinstance(self.keys, str): self.keys = [self.keys] for key in self.keys: data[key] = data_dict[key] for key, value in self.offset_keys.items(): data[key] = torch.tensor([data_dict[value].shape[0]]) for name, keys in self.kwargs.items(): name = name.replace("_keys", "") assert isinstance(keys, Sequence) data[name] = torch.cat([data_dict[key].float() for key in keys], dim=1) return data @TRANSFORMS.register_module() class Copy(object): def __init__(self, keys_dict=None): if keys_dict is None: keys_dict = dict(coord="origin_coord", segment="origin_segment") self.keys_dict = keys_dict def __call__(self, data_dict): for key, value in self.keys_dict.items(): if isinstance(data_dict[key], np.ndarray): data_dict[value] = data_dict[key].copy() elif isinstance(data_dict[key], torch.Tensor): data_dict[value] = data_dict[key].clone().detach() else: data_dict[value] = copy.deepcopy(data_dict[key]) return data_dict @TRANSFORMS.register_module() class Update(object): def __init__(self, keys_dict=None): if keys_dict is None: keys_dict = dict() self.keys_dict = keys_dict def __call__(self, data_dict): for key, value in self.keys_dict.items(): data_dict[key] = value return data_dict @TRANSFORMS.register_module() class ToTensor(object): def __call__(self, data): if isinstance(data, torch.Tensor): return data elif isinstance(data, str): # note that str is also a kind of sequence, judgement should before sequence return data elif isinstance(data, int): return torch.LongTensor([data]) elif isinstance(data, float): return torch.FloatTensor([data]) elif isinstance(data, np.ndarray) and np.issubdtype(data.dtype, bool): return torch.from_numpy(data) elif isinstance(data, np.ndarray) and np.issubdtype(data.dtype, np.integer): return torch.from_numpy(data).long() elif isinstance(data, np.ndarray) and np.issubdtype(data.dtype, np.floating): return torch.from_numpy(data).float() elif isinstance(data, Mapping): result = {sub_key: self(item) for sub_key, item in data.items()} return result elif isinstance(data, Sequence): result = [self(item) for item in data] return result else: raise TypeError(f"type {type(data)} cannot be converted to tensor.") @TRANSFORMS.register_module() class NormalizeColor(object): def __call__(self, data_dict): if "color" in data_dict.keys(): data_dict["color"] = data_dict["color"] / 255 return data_dict @TRANSFORMS.register_module() class NormalizeCoord(object): def __call__(self, data_dict): if "coord" in data_dict.keys(): # modified from pointnet2 centroid = np.mean(data_dict["coord"], axis=0) data_dict["coord"] -= centroid m = np.max(np.sqrt(np.sum(data_dict["coord"] ** 2, axis=1))) data_dict["coord"] = data_dict["coord"] / m return data_dict @TRANSFORMS.register_module() class PositiveShift(object): def __call__(self, data_dict): if "coord" in data_dict.keys(): coord_min = np.min(data_dict["coord"], 0) data_dict["coord"] -= coord_min return data_dict @TRANSFORMS.register_module() class CenterShift(object): def __init__(self, apply_z=True): self.apply_z = apply_z def __call__(self, data_dict): if "coord" in data_dict.keys(): x_min, y_min, z_min = data_dict["coord"].min(axis=0) x_max, y_max, _ = data_dict["coord"].max(axis=0) if self.apply_z: shift = [(x_min + x_max) / 2, (y_min + y_max) / 2, z_min] else: shift = [(x_min + x_max) / 2, (y_min + y_max) / 2, 0] data_dict["coord"] -= shift return data_dict @TRANSFORMS.register_module() class RandomShift(object): def __init__(self, shift=((-0.2, 0.2), (-0.2, 0.2), (0, 0))): self.shift = shift def __call__(self, data_dict): if "coord" in data_dict.keys(): shift_x = np.random.uniform(self.shift[0][0], self.shift[0][1]) shift_y = np.random.uniform(self.shift[1][0], self.shift[1][1]) shift_z = np.random.uniform(self.shift[2][0], self.shift[2][1]) data_dict["coord"] += [shift_x, shift_y, shift_z] return data_dict @TRANSFORMS.register_module() class PointClip(object): def __init__(self, point_cloud_range=(-80, -80, -3, 80, 80, 1)): self.point_cloud_range = point_cloud_range def __call__(self, data_dict): if "coord" in data_dict.keys(): data_dict["coord"] = np.clip( data_dict["coord"], a_min=self.point_cloud_range[:3], a_max=self.point_cloud_range[3:], ) return data_dict @TRANSFORMS.register_module() class RandomDropout(object): def __init__(self, dropout_ratio=0.2, dropout_application_ratio=0.5): """ upright_axis: axis index among x,y,z, i.e. 2 for z """ self.dropout_ratio = dropout_ratio self.dropout_application_ratio = dropout_application_ratio def __call__(self, data_dict): if random.random() < self.dropout_application_ratio: n = len(data_dict["coord"]) idx = np.random.choice(n, int(n * (1 - self.dropout_ratio)), replace=False) if "sampled_index" in data_dict: # for ScanNet data efficient, we need to make sure labeled point is sampled. idx = np.unique(np.append(idx, data_dict["sampled_index"])) mask = np.zeros_like(data_dict["segment"]).astype(bool) mask[data_dict["sampled_index"]] = True data_dict["sampled_index"] = np.where(mask[idx])[0] data_dict = index_operator(data_dict, idx) return data_dict @TRANSFORMS.register_module() class RandomRotate(object): def __init__(self, angle=None, center=None, axis="z", always_apply=False, p=0.5): self.angle = [-1, 1] if angle is None else angle self.axis = axis self.always_apply = always_apply self.p = p if not self.always_apply else 1 self.center = center def __call__(self, data_dict): if random.random() > self.p: return data_dict angle = np.random.uniform(self.angle[0], self.angle[1]) * np.pi rot_cos, rot_sin = np.cos(angle), np.sin(angle) if self.axis == "x": rot_t = np.array([[1, 0, 0], [0, rot_cos, -rot_sin], [0, rot_sin, rot_cos]]) elif self.axis == "y": rot_t = np.array([[rot_cos, 0, rot_sin], [0, 1, 0], [-rot_sin, 0, rot_cos]]) elif self.axis == "z": rot_t = np.array([[rot_cos, -rot_sin, 0], [rot_sin, rot_cos, 0], [0, 0, 1]]) else: raise NotImplementedError if "coord" in data_dict.keys(): if self.center is None: x_min, y_min, z_min = data_dict["coord"].min(axis=0) x_max, y_max, z_max = data_dict["coord"].max(axis=0) center = [(x_min + x_max) / 2, (y_min + y_max) / 2, (z_min + z_max) / 2] else: center = self.center data_dict["coord"] -= center data_dict["coord"] = np.dot(data_dict["coord"], np.transpose(rot_t)) data_dict["coord"] += center if "normal" in data_dict.keys(): data_dict["normal"] = np.dot(data_dict["normal"], np.transpose(rot_t)) return data_dict @TRANSFORMS.register_module() class RandomRotateTargetAngle(object): def __init__( self, angle=(1 / 2, 1, 3 / 2), center=None, axis="z", always_apply=False, p=0.75 ): self.angle = angle self.axis = axis self.always_apply = always_apply self.p = p if not self.always_apply else 1 self.center = center def __call__(self, data_dict): if random.random() > self.p: return data_dict angle = np.random.choice(self.angle) * np.pi rot_cos, rot_sin = np.cos(angle), np.sin(angle) if self.axis == "x": rot_t = np.array([[1, 0, 0], [0, rot_cos, -rot_sin], [0, rot_sin, rot_cos]]) elif self.axis == "y": rot_t = np.array([[rot_cos, 0, rot_sin], [0, 1, 0], [-rot_sin, 0, rot_cos]]) elif self.axis == "z": rot_t = np.array([[rot_cos, -rot_sin, 0], [rot_sin, rot_cos, 0], [0, 0, 1]]) else: raise NotImplementedError if "coord" in data_dict.keys(): if self.center is None: x_min, y_min, z_min = data_dict["coord"].min(axis=0) x_max, y_max, z_max = data_dict["coord"].max(axis=0) center = [(x_min + x_max) / 2, (y_min + y_max) / 2, (z_min + z_max) / 2] else: center = self.center data_dict["coord"] -= center data_dict["coord"] = np.dot(data_dict["coord"], np.transpose(rot_t)) data_dict["coord"] += center if "normal" in data_dict.keys(): data_dict["normal"] = np.dot(data_dict["normal"], np.transpose(rot_t)) return data_dict @TRANSFORMS.register_module() class RandomScale(object): def __init__(self, scale=None, anisotropic=False): self.scale = scale if scale is not None else [0.95, 1.05] self.anisotropic = anisotropic def __call__(self, data_dict): if "coord" in data_dict.keys(): scale = np.random.uniform( self.scale[0], self.scale[1], 3 if self.anisotropic else 1 ) data_dict["coord"] *= scale return data_dict @TRANSFORMS.register_module() class RandomFlip(object): def __init__(self, p=0.5): self.p = p def __call__(self, data_dict): if np.random.rand() < self.p: if "coord" in data_dict.keys(): data_dict["coord"][:, 0] = -data_dict["coord"][:, 0] if "normal" in data_dict.keys(): data_dict["normal"][:, 0] = -data_dict["normal"][:, 0] if np.random.rand() < self.p: if "coord" in data_dict.keys(): data_dict["coord"][:, 1] = -data_dict["coord"][:, 1] if "normal" in data_dict.keys(): data_dict["normal"][:, 1] = -data_dict["normal"][:, 1] return data_dict @TRANSFORMS.register_module() class RandomJitter(object): def __init__(self, sigma=0.01, clip=0.05): assert clip > 0 self.sigma = sigma self.clip = clip def __call__(self, data_dict): if "coord" in data_dict.keys(): jitter = np.clip( self.sigma * np.random.randn(data_dict["coord"].shape[0], 3), -self.clip, self.clip, ) data_dict["coord"] += jitter return data_dict @TRANSFORMS.register_module() class ClipGaussianJitter(object): def __init__(self, scalar=0.02, store_jitter=False): self.scalar = scalar self.mean = np.mean(3) self.cov = np.identity(3) self.quantile = 1.96 self.store_jitter = store_jitter def __call__(self, data_dict): if "coord" in data_dict.keys(): jitter = np.random.multivariate_normal( self.mean, self.cov, data_dict["coord"].shape[0] ) jitter = self.scalar * np.clip(jitter / 1.96, -1, 1) data_dict["coord"] += jitter if self.store_jitter: data_dict["jitter"] = jitter return data_dict @TRANSFORMS.register_module() class ChromaticAutoContrast(object): def __init__(self, p=0.2, blend_factor=None): self.p = p self.blend_factor = blend_factor def __call__(self, data_dict): if "color" in data_dict.keys() and np.random.rand() < self.p: lo = np.min(data_dict["color"], 0, keepdims=True) hi = np.max(data_dict["color"], 0, keepdims=True) scale = 255 / (hi - lo) contrast_feat = (data_dict["color"][:, :3] - lo) * scale blend_factor = ( np.random.rand() if self.blend_factor is None else self.blend_factor ) data_dict["color"][:, :3] = (1 - blend_factor) * data_dict["color"][ :, :3 ] + blend_factor * contrast_feat return data_dict @TRANSFORMS.register_module() class ChromaticTranslation(object): def __init__(self, p=0.95, ratio=0.05): self.p = p self.ratio = ratio def __call__(self, data_dict): if "color" in data_dict.keys() and np.random.rand() < self.p: tr = (np.random.rand(1, 3) - 0.5) * 255 * 2 * self.ratio data_dict["color"][:, :3] = np.clip(tr + data_dict["color"][:, :3], 0, 255) return data_dict @TRANSFORMS.register_module() class ChromaticJitter(object): def __init__(self, p=0.95, std=0.005): self.p = p self.std = std def __call__(self, data_dict): if "color" in data_dict.keys() and np.random.rand() < self.p: noise = np.random.randn(data_dict["color"].shape[0], 3) noise *= self.std * 255 data_dict["color"][:, :3] = np.clip( noise + data_dict["color"][:, :3], 0, 255 ) return data_dict @TRANSFORMS.register_module() class RandomColorGrayScale(object): def __init__(self, p): self.p = p @staticmethod def rgb_to_grayscale(color, num_output_channels=1): if color.shape[-1] < 3: raise TypeError( "Input color should have at least 3 dimensions, but found {}".format( color.shape[-1] ) ) if num_output_channels not in (1, 3): raise ValueError("num_output_channels should be either 1 or 3") r, g, b = color[..., 0], color[..., 1], color[..., 2] gray = (0.2989 * r + 0.587 * g + 0.114 * b).astype(color.dtype) gray = np.expand_dims(gray, axis=-1) if num_output_channels == 3: gray = np.broadcast_to(gray, color.shape) return gray def __call__(self, data_dict): if np.random.rand() < self.p: data_dict["color"] = self.rgb_to_grayscale(data_dict["color"], 3) return data_dict @TRANSFORMS.register_module() class RandomColorJitter(object): """ Random Color Jitter for 3D point cloud (refer torchvision) """ def __init__(self, brightness=0, contrast=0, saturation=0, hue=0, p=0.95): self.brightness = self._check_input(brightness, "brightness") self.contrast = self._check_input(contrast, "contrast") self.saturation = self._check_input(saturation, "saturation") self.hue = self._check_input( hue, "hue", center=0, bound=(-0.5, 0.5), clip_first_on_zero=False ) self.p = p @staticmethod def _check_input( value, name, center=1, bound=(0, float("inf")), clip_first_on_zero=True ): if isinstance(value, numbers.Number): if value < 0: raise ValueError( "If {} is a single number, it must be non negative.".format(name) ) value = [center - float(value), center + float(value)] if clip_first_on_zero: value[0] = max(value[0], 0.0) elif isinstance(value, (tuple, list)) and len(value) == 2: if not bound[0] <= value[0] <= value[1] <= bound[1]: raise ValueError("{} values should be between {}".format(name, bound)) else: raise TypeError( "{} should be a single number or a list/tuple with length 2.".format( name ) ) # if value is 0 or (1., 1.) for brightness/contrast/saturation # or (0., 0.) for hue, do nothing if value[0] == value[1] == center: value = None return value @staticmethod def blend(color1, color2, ratio): ratio = float(ratio) bound = 255.0 return ( (ratio * color1 + (1.0 - ratio) * color2) .clip(0, bound) .astype(color1.dtype) ) @staticmethod def rgb2hsv(rgb): r, g, b = rgb[..., 0], rgb[..., 1], rgb[..., 2] maxc = np.max(rgb, axis=-1) minc = np.min(rgb, axis=-1) eqc = maxc == minc cr = maxc - minc s = cr / (np.ones_like(maxc) * eqc + maxc * (1 - eqc)) cr_divisor = np.ones_like(maxc) * eqc + cr * (1 - eqc) rc = (maxc - r) / cr_divisor gc = (maxc - g) / cr_divisor bc = (maxc - b) / cr_divisor hr = (maxc == r) * (bc - gc) hg = ((maxc == g) & (maxc != r)) * (2.0 + rc - bc) hb = ((maxc != g) & (maxc != r)) * (4.0 + gc - rc) h = hr + hg + hb h = (h / 6.0 + 1.0) % 1.0 return np.stack((h, s, maxc), axis=-1) @staticmethod def hsv2rgb(hsv): h, s, v = hsv[..., 0], hsv[..., 1], hsv[..., 2] i = np.floor(h * 6.0) f = (h * 6.0) - i i = i.astype(np.int32) p = np.clip((v * (1.0 - s)), 0.0, 1.0) q = np.clip((v * (1.0 - s * f)), 0.0, 1.0) t = np.clip((v * (1.0 - s * (1.0 - f))), 0.0, 1.0) i = i % 6 mask = np.expand_dims(i, axis=-1) == np.arange(6) a1 = np.stack((v, q, p, p, t, v), axis=-1) a2 = np.stack((t, v, v, q, p, p), axis=-1) a3 = np.stack((p, p, t, v, v, q), axis=-1) a4 = np.stack((a1, a2, a3), axis=-1) return np.einsum("...na, ...nab -> ...nb", mask.astype(hsv.dtype), a4) def adjust_brightness(self, color, brightness_factor): if brightness_factor < 0: raise ValueError( "brightness_factor ({}) is not non-negative.".format(brightness_factor) ) return self.blend(color, np.zeros_like(color), brightness_factor) def adjust_contrast(self, color, contrast_factor): if contrast_factor < 0: raise ValueError( "contrast_factor ({}) is not non-negative.".format(contrast_factor) ) mean = np.mean(RandomColorGrayScale.rgb_to_grayscale(color)) return self.blend(color, mean, contrast_factor) def adjust_saturation(self, color, saturation_factor): if saturation_factor < 0: raise ValueError( "saturation_factor ({}) is not non-negative.".format(saturation_factor) ) gray = RandomColorGrayScale.rgb_to_grayscale(color) return self.blend(color, gray, saturation_factor) def adjust_hue(self, color, hue_factor): if not (-0.5 <= hue_factor <= 0.5): raise ValueError( "hue_factor ({}) is not in [-0.5, 0.5].".format(hue_factor) ) orig_dtype = color.dtype hsv = self.rgb2hsv(color / 255.0) h, s, v = hsv[..., 0], hsv[..., 1], hsv[..., 2] h = (h + hue_factor) % 1.0 hsv = np.stack((h, s, v), axis=-1) color_hue_adj = (self.hsv2rgb(hsv) * 255.0).astype(orig_dtype) return color_hue_adj @staticmethod def get_params(brightness, contrast, saturation, hue): fn_idx = torch.randperm(4) b = ( None if brightness is None else np.random.uniform(brightness[0], brightness[1]) ) c = None if contrast is None else np.random.uniform(contrast[0], contrast[1]) s = ( None if saturation is None else np.random.uniform(saturation[0], saturation[1]) ) h = None if hue is None else np.random.uniform(hue[0], hue[1]) return fn_idx, b, c, s, h def __call__(self, data_dict): ( fn_idx, brightness_factor, contrast_factor, saturation_factor, hue_factor, ) = self.get_params(self.brightness, self.contrast, self.saturation, self.hue) for fn_id in fn_idx: if ( fn_id == 0 and brightness_factor is not None and np.random.rand() < self.p ): data_dict["color"] = self.adjust_brightness( data_dict["color"], brightness_factor ) elif ( fn_id == 1 and contrast_factor is not None and np.random.rand() < self.p ): data_dict["color"] = self.adjust_contrast( data_dict["color"], contrast_factor ) elif ( fn_id == 2 and saturation_factor is not None and np.random.rand() < self.p ): data_dict["color"] = self.adjust_saturation( data_dict["color"], saturation_factor ) elif fn_id == 3 and hue_factor is not None and np.random.rand() < self.p: data_dict["color"] = self.adjust_hue(data_dict["color"], hue_factor) return data_dict @TRANSFORMS.register_module() class HueSaturationTranslation(object): @staticmethod def rgb_to_hsv(rgb): # Translated from source of colorsys.rgb_to_hsv # r,g,b should be a numpy arrays with values between 0 and 255 # rgb_to_hsv returns an array of floats between 0.0 and 1.0. rgb = rgb.astype("float") hsv = np.zeros_like(rgb) # in case an RGBA array was passed, just copy the A channel hsv[..., 3:] = rgb[..., 3:] r, g, b = rgb[..., 0], rgb[..., 1], rgb[..., 2] maxc = np.max(rgb[..., :3], axis=-1) minc = np.min(rgb[..., :3], axis=-1) hsv[..., 2] = maxc mask = maxc != minc hsv[mask, 1] = (maxc - minc)[mask] / maxc[mask] rc = np.zeros_like(r) gc = np.zeros_like(g) bc = np.zeros_like(b) rc[mask] = (maxc - r)[mask] / (maxc - minc)[mask] gc[mask] = (maxc - g)[mask] / (maxc - minc)[mask] bc[mask] = (maxc - b)[mask] / (maxc - minc)[mask] hsv[..., 0] = np.select( [r == maxc, g == maxc], [bc - gc, 2.0 + rc - bc], default=4.0 + gc - rc ) hsv[..., 0] = (hsv[..., 0] / 6.0) % 1.0 return hsv @staticmethod def hsv_to_rgb(hsv): # Translated from source of colorsys.hsv_to_rgb # h,s should be a numpy arrays with values between 0.0 and 1.0 # v should be a numpy array with values between 0.0 and 255.0 # hsv_to_rgb returns an array of uints between 0 and 255. rgb = np.empty_like(hsv) rgb[..., 3:] = hsv[..., 3:] h, s, v = hsv[..., 0], hsv[..., 1], hsv[..., 2] i = (h * 6.0).astype("uint8") f = (h * 6.0) - i p = v * (1.0 - s) q = v * (1.0 - s * f) t = v * (1.0 - s * (1.0 - f)) i = i % 6 conditions = [s == 0.0, i == 1, i == 2, i == 3, i == 4, i == 5] rgb[..., 0] = np.select(conditions, [v, q, p, p, t, v], default=v) rgb[..., 1] = np.select(conditions, [v, v, v, q, p, p], default=t) rgb[..., 2] = np.select(conditions, [v, p, t, v, v, q], default=p) return rgb.astype("uint8") def __init__(self, hue_max=0.5, saturation_max=0.2): self.hue_max = hue_max self.saturation_max = saturation_max def __call__(self, data_dict): if "color" in data_dict.keys(): # Assume color[:, :3] is rgb hsv = HueSaturationTranslation.rgb_to_hsv(data_dict["color"][:, :3]) hue_val = (np.random.rand() - 0.5) * 2 * self.hue_max sat_ratio = 1 + (np.random.rand() - 0.5) * 2 * self.saturation_max hsv[..., 0] = np.remainder(hue_val + hsv[..., 0] + 1, 1) hsv[..., 1] = np.clip(sat_ratio * hsv[..., 1], 0, 1) data_dict["color"][:, :3] = np.clip( HueSaturationTranslation.hsv_to_rgb(hsv), 0, 255 ) return data_dict @TRANSFORMS.register_module() class RandomColorDrop(object): def __init__(self, p=0.2, color_augment=0.0): self.p = p self.color_augment = color_augment def __call__(self, data_dict): if "color" in data_dict.keys() and np.random.rand() < self.p: data_dict["color"] *= self.color_augment return data_dict def __repr__(self): return "RandomColorDrop(color_augment: {}, p: {})".format( self.color_augment, self.p ) @TRANSFORMS.register_module() class ElasticDistortion(object): def __init__(self, distortion_params=None): self.distortion_params = ( [[0.2, 0.4], [0.8, 1.6]] if distortion_params is None else distortion_params ) @staticmethod def elastic_distortion(coords, granularity, magnitude): """ Apply elastic distortion on sparse coordinate space. pointcloud: numpy array of (number of points, at least 3 spatial dims) granularity: size of the noise grid (in same scale[m/cm] as the voxel grid) magnitude: noise multiplier """ blurx = np.ones((3, 1, 1, 1)).astype("float32") / 3 blury = np.ones((1, 3, 1, 1)).astype("float32") / 3 blurz = np.ones((1, 1, 3, 1)).astype("float32") / 3 coords_min = coords.min(0) # Create Gaussian noise tensor of the size given by granularity. noise_dim = ((coords - coords_min).max(0) // granularity).astype(int) + 3 noise = np.random.randn(*noise_dim, 3).astype(np.float32) # Smoothing. for _ in range(2): noise = scipy.ndimage.filters.convolve( noise, blurx, mode="constant", cval=0 ) noise = scipy.ndimage.filters.convolve( noise, blury, mode="constant", cval=0 ) noise = scipy.ndimage.filters.convolve( noise, blurz, mode="constant", cval=0 ) # Trilinear interpolate noise filters for each spatial dimensions. ax = [ np.linspace(d_min, d_max, d) for d_min, d_max, d in zip( coords_min - granularity, coords_min + granularity * (noise_dim - 2), noise_dim, ) ] interp = scipy.interpolate.RegularGridInterpolator( ax, noise, bounds_error=False, fill_value=0 ) coords += interp(coords) * magnitude return coords def __call__(self, data_dict): if "coord" in data_dict.keys() and self.distortion_params is not None: if random.random() < 0.95: for granularity, magnitude in self.distortion_params: data_dict["coord"] = self.elastic_distortion( data_dict["coord"], granularity, magnitude ) return data_dict @TRANSFORMS.register_module() class GridSample(object): def __init__( self, grid_size=0.05, hash_type="fnv", mode="train", return_inverse=False, return_grid_coord=False, return_min_coord=False, return_displacement=False, project_displacement=False, ): self.grid_size = grid_size self.hash = self.fnv_hash_vec if hash_type == "fnv" else self.ravel_hash_vec assert mode in ["train", "test"] self.mode = mode self.return_inverse = return_inverse self.return_grid_coord = return_grid_coord self.return_min_coord = return_min_coord self.return_displacement = return_displacement self.project_displacement = project_displacement def __call__(self, data_dict): assert "coord" in data_dict.keys() scaled_coord = data_dict["coord"] / np.array(self.grid_size) grid_coord = np.floor(scaled_coord).astype(int) min_coord = grid_coord.min(0) grid_coord -= min_coord scaled_coord -= min_coord min_coord = min_coord * np.array(self.grid_size) key = self.hash(grid_coord) idx_sort = np.argsort(key) key_sort = key[idx_sort] _, inverse, count = np.unique(key_sort, return_inverse=True, return_counts=True) if self.mode == "train": # train mode idx_select = ( np.cumsum(np.insert(count, 0, 0)[0:-1]) + np.random.randint(0, count.max(), count.size) % count ) idx_unique = idx_sort[idx_select] if "sampled_index" in data_dict: # for ScanNet data efficient, we need to make sure labeled point is sampled. idx_unique = np.unique( np.append(idx_unique, data_dict["sampled_index"]) ) mask = np.zeros_like(data_dict["segment"]).astype(bool) mask[data_dict["sampled_index"]] = True data_dict["sampled_index"] = np.where(mask[idx_unique])[0] data_dict = index_operator(data_dict, idx_unique) if self.return_inverse: data_dict["inverse"] = np.zeros_like(inverse) data_dict["inverse"][idx_sort] = inverse if self.return_grid_coord: data_dict["grid_coord"] = grid_coord[idx_unique] data_dict["index_valid_keys"].append("grid_coord") if self.return_min_coord: data_dict["min_coord"] = min_coord.reshape([1, 3]) if self.return_displacement: displacement = ( scaled_coord - grid_coord - 0.5 ) # [0, 1] -> [-0.5, 0.5] displacement to center if self.project_displacement: displacement = np.sum( displacement * data_dict["normal"], axis=-1, keepdims=True ) data_dict["displacement"] = displacement[idx_unique] data_dict["index_valid_keys"].append("displacement") return data_dict elif self.mode == "test": # test mode data_part_list = [] for i in range(count.max()): idx_select = np.cumsum(np.insert(count, 0, 0)[0:-1]) + i % count idx_part = idx_sort[idx_select] data_part = index_operator(data_dict, idx_part, duplicate=True) data_part["index"] = idx_part if self.return_inverse: data_part["inverse"] = np.zeros_like(inverse) data_part["inverse"][idx_sort] = inverse if self.return_grid_coord: data_part["grid_coord"] = grid_coord[idx_part] data_dict["index_valid_keys"].append("grid_coord") if self.return_min_coord: data_part["min_coord"] = min_coord.reshape([1, 3]) if self.return_displacement: displacement = ( scaled_coord - grid_coord - 0.5 ) # [0, 1] -> [-0.5, 0.5] displacement to center if self.project_displacement: displacement = np.sum( displacement * data_dict["normal"], axis=-1, keepdims=True ) data_dict["displacement"] = displacement[idx_part] data_dict["index_valid_keys"].append("displacement") data_part_list.append(data_part) return data_part_list else: raise NotImplementedError @staticmethod def ravel_hash_vec(arr): """ Ravel the coordinates after subtracting the min coordinates. """ assert arr.ndim == 2 arr = arr.copy() arr -= arr.min(0) arr = arr.astype(np.uint64, copy=False) arr_max = arr.max(0).astype(np.uint64) + 1 keys = np.zeros(arr.shape[0], dtype=np.uint64) # Fortran style indexing for j in range(arr.shape[1] - 1): keys += arr[:, j] keys *= arr_max[j + 1] keys += arr[:, -1] return keys @staticmethod def fnv_hash_vec(arr): """ FNV64-1A """ assert arr.ndim == 2 # Floor first for negative coordinates arr = arr.copy() arr = arr.astype(np.uint64, copy=False) hashed_arr = np.uint64(14695981039346656037) * np.ones( arr.shape[0], dtype=np.uint64 ) for j in range(arr.shape[1]): hashed_arr *= np.uint64(1099511628211) hashed_arr = np.bitwise_xor(hashed_arr, arr[:, j]) return hashed_arr @TRANSFORMS.register_module() class SphereCrop(object): def __init__(self, point_max=80000, sample_rate=None, mode="random"): self.point_max = point_max self.sample_rate = sample_rate assert mode in ["random", "center", "all"] self.mode = mode def __call__(self, data_dict): point_max = ( int(self.sample_rate * data_dict["coord"].shape[0]) if self.sample_rate is not None else self.point_max ) assert "coord" in data_dict.keys() if data_dict["coord"].shape[0] > point_max: if self.mode == "random": center = data_dict["coord"][ np.random.randint(data_dict["coord"].shape[0]) ] elif self.mode == "center": center = data_dict["coord"][data_dict["coord"].shape[0] // 2] else: raise NotImplementedError idx_crop = np.argsort(np.sum(np.square(data_dict["coord"] - center), 1))[ :point_max ] data_dict = index_operator(data_dict, idx_crop) return data_dict @TRANSFORMS.register_module() class ShufflePoint(object): def __call__(self, data_dict): assert "coord" in data_dict.keys() shuffle_index = np.arange(data_dict["coord"].shape[0]) np.random.shuffle(shuffle_index) data_dict = index_operator(data_dict, shuffle_index) return data_dict @TRANSFORMS.register_module() class CropBoundary(object): def __call__(self, data_dict): assert "segment" in data_dict segment = data_dict["segment"].flatten() mask = (segment != 0) * (segment != 1) data_dict = index_operator(data_dict, mask) return data_dict @TRANSFORMS.register_module() class ContrastiveViewsGenerator(object): def __init__( self, view_keys=("coord", "color", "normal", "origin_coord"), view_trans_cfg=None, ): self.view_keys = view_keys self.view_trans = Compose(view_trans_cfg) def __call__(self, data_dict): view1_dict = dict() view2_dict = dict() for key in self.view_keys: view1_dict[key] = data_dict[key].copy() view2_dict[key] = data_dict[key].copy() view1_dict = self.view_trans(view1_dict) view2_dict = self.view_trans(view2_dict) for key, value in view1_dict.items(): data_dict["view1_" + key] = value for key, value in view2_dict.items(): data_dict["view2_" + key] = value return data_dict @TRANSFORMS.register_module() class MultiViewGenerator(object): def __init__( self, global_view_num=2, global_view_scale=(0.4, 1.0), local_view_num=4, local_view_scale=(0.1, 0.4), global_shared_transform=None, global_transform=None, local_transform=None, max_size=65536, center_height_scale=(0, 1), shared_global_view=False, view_keys=("coord", "origin_coord", "color", "normal"), ): self.global_view_num = global_view_num self.global_view_scale = global_view_scale self.local_view_num = local_view_num self.local_view_scale = local_view_scale self.global_shared_transform = Compose(global_shared_transform) self.global_transform = Compose(global_transform) self.local_transform = Compose(local_transform) self.max_size = max_size self.center_height_scale = center_height_scale self.shared_global_view = shared_global_view self.view_keys = view_keys assert "coord" in view_keys def get_view(self, point, center, scale): coord = point["coord"] max_size = min(self.max_size, coord.shape[0]) size = int(np.random.uniform(*scale) * max_size) index = np.argsort(np.sum(np.square(coord - center), axis=-1))[:size] view = dict(index=index) for key in point.keys(): if key in self.view_keys: view[key] = point[key][index] if "index_valid_keys" in point.keys(): # inherit index_valid_keys from point view["index_valid_keys"] = point["index_valid_keys"] return view def __call__(self, data_dict): coord = data_dict["coord"] point = self.global_shared_transform(copy.deepcopy(data_dict)) z_min = coord[:, 2].min() z_max = coord[:, 2].max() z_min_ = z_min + (z_max - z_min) * self.center_height_scale[0] z_max_ = z_min + (z_max - z_min) * self.center_height_scale[1] center_mask = np.logical_and(coord[:, 2] >= z_min_, coord[:, 2] <= z_max_) # get major global view major_center = coord[np.random.choice(np.where(center_mask)[0])] major_view = self.get_view(point, major_center, self.global_view_scale) major_coord = major_view["coord"] # get global views: restrict the center of left global view within the major global view if not self.shared_global_view: global_views = [ self.get_view( point=point, center=major_coord[np.random.randint(major_coord.shape[0])], scale=self.global_view_scale, ) for _ in range(self.global_view_num - 1) ] else: global_views = [ {key: value.copy() for key, value in major_view.items()} for _ in range(self.global_view_num - 1) ] global_views = [major_view] + global_views # get local views: restrict the center of local view within the major global view cover_mask = np.zeros_like(major_view["index"], dtype=bool) local_views = [] for i in range(self.local_view_num): if sum(~cover_mask) == 0: # reset cover mask if all points are sampled cover_mask[:] = False local_view = self.get_view( point=data_dict, center=major_coord[np.random.choice(np.where(~cover_mask)[0])], scale=self.local_view_scale, ) local_views.append(local_view) cover_mask[np.isin(major_view["index"], local_view["index"])] = True # augmentation and concat view_dict = {} for global_view in global_views: global_view.pop("index") global_view = self.global_transform(global_view) for key in self.view_keys: if f"global_{key}" in view_dict.keys(): view_dict[f"global_{key}"].append(global_view[key]) else: view_dict[f"global_{key}"] = [global_view[key]] view_dict["global_offset"] = np.cumsum( [data.shape[0] for data in view_dict["global_coord"]] ) for local_view in local_views: local_view.pop("index") local_view = self.local_transform(local_view) for key in self.view_keys: if f"local_{key}" in view_dict.keys(): view_dict[f"local_{key}"].append(local_view[key]) else: view_dict[f"local_{key}"] = [local_view[key]] view_dict["local_offset"] = np.cumsum( [data.shape[0] for data in view_dict["local_coord"]] ) for key in view_dict.keys(): if "offset" not in key: view_dict[key] = np.concatenate(view_dict[key], axis=0) data_dict.update(view_dict) return data_dict @TRANSFORMS.register_module() class InstanceParser(object): def __init__(self, segment_ignore_index=(-1, 0, 1), instance_ignore_index=-1): self.segment_ignore_index = segment_ignore_index self.instance_ignore_index = instance_ignore_index def __call__(self, data_dict): coord = data_dict["coord"] segment = data_dict["segment"] instance = data_dict["instance"] mask = ~np.in1d(segment, self.segment_ignore_index) # mapping ignored instance to ignore index instance[~mask] = self.instance_ignore_index # reorder left instance unique, inverse = np.unique(instance[mask], return_inverse=True) instance_num = len(unique) instance[mask] = inverse # init instance information centroid = np.ones((coord.shape[0], 3)) * self.instance_ignore_index bbox = np.ones((instance_num, 8)) * self.instance_ignore_index vacancy = [ index for index in self.segment_ignore_index if index >= 0 ] # vacate class index for instance_id in range(instance_num): mask_ = instance == instance_id coord_ = coord[mask_] bbox_min = coord_.min(0) bbox_max = coord_.max(0) bbox_centroid = coord_.mean(0) bbox_center = (bbox_max + bbox_min) / 2 bbox_size = bbox_max - bbox_min bbox_theta = np.zeros(1, dtype=coord_.dtype) bbox_class = np.array([segment[mask_][0]], dtype=coord_.dtype) # shift class index to fill vacate class index caused by segment ignore index bbox_class -= np.greater(bbox_class, vacancy).sum() centroid[mask_] = bbox_centroid bbox[instance_id] = np.concatenate( [bbox_center, bbox_size, bbox_theta, bbox_class] ) # 3 + 3 + 1 + 1 = 8 data_dict["instance"] = instance data_dict["instance_centroid"] = centroid data_dict["bbox"] = bbox return data_dict class Compose(object): def __init__(self, cfg=None): self.cfg = cfg if cfg is not None else [] self.transforms = [] for t_cfg in self.cfg: self.transforms.append(TRANSFORMS.build(t_cfg)) def __call__(self, data_dict): for t in self.transforms: data_dict = t(data_dict) return data_dict def default(): config = [ dict(type="CenterShift", apply_z=True), dict( type="GridSample", # grid_size=0.02, # grid_size=0.01, grid_size=0.005, # grid_size=0.0025, hash_type="fnv", mode="train", return_grid_coord=True, return_inverse=True, ), dict(type="NormalizeColor"), dict(type="ToTensor"), dict( type="Collect", keys=("coord", "grid_coord", "color", "inverse"), feat_keys=("coord", "color", "normal"), ), ] return Compose(config)