# Open Source Model Licensed under the Apache License Version 2.0 # and Other Licenses of the Third-Party Components therein: # The below Model in this distribution may have been modified by THL A29 Limited # ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited. # Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved. # The below software and/or models in this distribution may have been # modified by THL A29 Limited ("Tencent Modifications"). # All Tencent Modifications are Copyright (C) THL A29 Limited. # Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT # except for the third-party components listed below. # Hunyuan 3D does not impose any additional limitations beyond what is outlined # in the repsective licenses of these third-party components. # Users must comply with all terms and conditions of original licenses of these third-party # components and must ensure that the usage of the third party components adheres to # all relevant laws and regulations. # For avoidance of doubts, Hunyuan 3D means the large language models and # their software and algorithms, including trained model weights, parameters (including # optimizer states), machine-learning model code, inference-enabling code, training-enabling code, # fine-tuning enabling code and other elements of the foregoing made publicly available # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. import os from typing import Tuple, List, Union from functools import partial import copy import numpy as np import torch import torch.nn as nn import yaml from .attention_blocks import ( FourierEmbedder, Transformer, CrossAttentionDecoder, PointCrossAttentionEncoder, ) from .surface_extractors import MCSurfaceExtractor, SurfaceExtractors, Latent2MeshOutput from .volume_decoders import ( VanillaVolumeDecoder, ) from ...utils.misc import logger, synchronize_timer, smart_load_model from ...utils.mesh_utils import extract_geometry_fast class DiagonalGaussianDistribution(object): def __init__( self, parameters: Union[torch.Tensor, List[torch.Tensor]], deterministic=False, feat_dim=1, ): """ Initialize a diagonal Gaussian distribution with mean and log-variance parameters. Args: parameters (Union[torch.Tensor, List[torch.Tensor]]): Either a single tensor containing concatenated mean and log-variance along `feat_dim`, or a list of two tensors [mean, logvar]. deterministic (bool, optional): If True, the distribution is deterministic (zero variance). Default is False. feat_dim (int, optional): Dimension along which mean and logvar are concatenated if parameters is a single tensor. Default is 1. """ self.feat_dim = feat_dim self.parameters = parameters if isinstance(parameters, list): self.mean = parameters[0] self.logvar = parameters[1] else: self.mean, self.logvar = torch.chunk(parameters, 2, dim=feat_dim) self.logvar = torch.clamp(self.logvar, -30.0, 20.0) self.deterministic = deterministic self.std = torch.exp(0.5 * self.logvar) self.var = torch.exp(self.logvar) if self.deterministic: self.var = self.std = torch.zeros_like(self.mean) def sample(self): """ Sample from the diagonal Gaussian distribution. Returns: torch.Tensor: A sample tensor with the same shape as the mean. """ x = self.mean + self.std * torch.randn_like(self.mean) return x def kl(self, other=None, dims=(1, 2, 3)): """ Compute the Kullback-Leibler (KL) divergence between this distribution and another. If `other` is None, compute KL divergence to a standard normal distribution N(0, I). Args: other (DiagonalGaussianDistribution, optional): Another diagonal Gaussian distribution. dims (tuple, optional): Dimensions along which to compute the mean KL divergence. Default is (1, 2, 3). Returns: torch.Tensor: The mean KL divergence value. """ if self.deterministic: return torch.Tensor([0.0]) else: if other is None: return 0.5 * torch.mean( torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, dim=dims ) else: return 0.5 * torch.mean( torch.pow(self.mean - other.mean, 2) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar, dim=dims, ) def nll(self, sample, dims=(1, 2, 3)): if self.deterministic: return torch.Tensor([0.0]) logtwopi = np.log(2.0 * np.pi) return 0.5 * torch.sum( logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, dim=dims, ) def mode(self): return self.mean class VectsetVAE(nn.Module): @classmethod @synchronize_timer("VectsetVAE Model Loading") def from_single_file( cls, ckpt_path, config_path, device="cuda", dtype=torch.float16, use_safetensors=None, **kwargs, ): # load config with open(config_path, "r") as f: config = yaml.safe_load(f) # load ckpt if use_safetensors: ckpt_path = ckpt_path.replace(".ckpt", ".safetensors") if not os.path.exists(ckpt_path): raise FileNotFoundError(f"Model file {ckpt_path} not found") logger.info(f"Loading model from {ckpt_path}") if use_safetensors: import safetensors.torch ckpt = safetensors.torch.load_file(ckpt_path, device="cpu") else: ckpt = torch.load(ckpt_path, map_location="cpu", weights_only=True) model_kwargs = config["params"] model_kwargs.update(kwargs) model = cls(**model_kwargs) model.load_state_dict(ckpt) model.to(device=device, dtype=dtype) return model @classmethod def from_pretrained( cls, model_path, device="cuda", dtype=torch.float16, use_safetensors=False, variant="fp16", subfolder="hunyuan3d-vae-v2-1", **kwargs, ): config_path, ckpt_path = smart_load_model( model_path, subfolder=subfolder, use_safetensors=use_safetensors, variant=variant, ) return cls.from_single_file( ckpt_path, config_path, device=device, dtype=dtype, use_safetensors=use_safetensors, **kwargs, ) def init_from_ckpt(self, path, ignore_keys=()): state_dict = torch.load(path, map_location="cpu") state_dict = state_dict.get("state_dict", state_dict) keys = list(state_dict.keys()) for k in keys: for ik in ignore_keys: if k.startswith(ik): print("Deleting key {} from state_dict.".format(k)) del state_dict[k] missing, unexpected = self.load_state_dict(state_dict, strict=False) print( f"Restored from {path} with {len(missing)} missing and" f" {len(unexpected)} unexpected keys" ) if len(missing) > 0: print(f"Missing Keys: {missing}") print(f"Unexpected Keys: {unexpected}") def __init__(self, volume_decoder=None, surface_extractor=None): super().__init__() if volume_decoder is None: volume_decoder = VanillaVolumeDecoder() if surface_extractor is None: surface_extractor = MCSurfaceExtractor() self.volume_decoder = volume_decoder self.surface_extractor = surface_extractor def latents2mesh(self, latents: torch.FloatTensor, **kwargs): with synchronize_timer("Volume decoding"): grid_logits = self.volume_decoder(latents, self.geo_decoder, **kwargs) with synchronize_timer("Surface extraction"): outputs = self.surface_extractor(grid_logits, **kwargs) return outputs class VolumeDecoderShapeVAE(VectsetVAE): def __init__( self, *, num_latents: int, embed_dim: int, width: int, heads: int, num_decoder_layers: int, num_encoder_layers: int = 8, pc_size: int = 5120, pc_sharpedge_size: int = 5120, point_feats: int = 3, downsample_ratio: int = 20, geo_decoder_downsample_ratio: int = 1, geo_decoder_mlp_expand_ratio: int = 4, geo_decoder_ln_post: bool = True, num_freqs: int = 8, include_pi: bool = True, qkv_bias: bool = True, qk_norm: bool = False, label_type: str = "binary", drop_path_rate: float = 0.0, scale_factor: float = 1.0, use_ln_post: bool = True, ckpt_path=None, volume_decoder=None, surface_extractor=None, ): super().__init__(volume_decoder, surface_extractor) self.geo_decoder_ln_post = geo_decoder_ln_post self.downsample_ratio = downsample_ratio self.fourier_embedder = FourierEmbedder( num_freqs=num_freqs, include_pi=include_pi ) self.encoder = PointCrossAttentionEncoder( fourier_embedder=self.fourier_embedder, num_latents=num_latents, downsample_ratio=self.downsample_ratio, pc_size=pc_size, pc_sharpedge_size=pc_sharpedge_size, point_feats=point_feats, width=width, heads=heads, layers=num_encoder_layers, qkv_bias=qkv_bias, use_ln_post=use_ln_post, qk_norm=qk_norm, ) self.pre_kl = nn.Linear(width, embed_dim * 2) self.post_kl = nn.Linear(embed_dim, width) self.transformer = Transformer( width=width, layers=num_decoder_layers, heads=heads, qkv_bias=qkv_bias, qk_norm=qk_norm, drop_path_rate=drop_path_rate, ) self.geo_decoder = CrossAttentionDecoder( fourier_embedder=self.fourier_embedder, out_channels=1, mlp_expand_ratio=geo_decoder_mlp_expand_ratio, downsample_ratio=geo_decoder_downsample_ratio, enable_ln_post=self.geo_decoder_ln_post, width=width // geo_decoder_downsample_ratio, heads=heads // geo_decoder_downsample_ratio, qkv_bias=qkv_bias, qk_norm=qk_norm, label_type=label_type, ) self.scale_factor = scale_factor self.latent_shape = (num_latents, embed_dim) if ckpt_path is not None: self.init_from_ckpt(ckpt_path) def forward(self, latents): latents = self.post_kl(latents) latents = self.transformer(latents) return latents def encode(self, surface, sample_posterior=True, return_pc_info=False): pc, feats = surface[:, :, :3], surface[:, :, 3:] latents, pc_infos = self.encoder(pc, feats) # print(latents.shape, self.pre_kl.weight.shape) moments = self.pre_kl(latents) posterior = DiagonalGaussianDistribution(moments, feat_dim=-1) if sample_posterior: latents = posterior.sample() else: latents = posterior.mode() if return_pc_info: return latents, pc_infos else: return latents def encode_shape(self, surface, return_pc_info=False): pc, feats = surface[:, :, :3], surface[:, :, 3:] latents, pc_infos = self.encoder(pc, feats) if return_pc_info: return latents, pc_infos else: return latents def decode(self, latents): latents = self.post_kl(latents) latents = self.transformer(latents) return latents def query_geometry(self, queries: torch.FloatTensor, latents: torch.FloatTensor): logits = self.geo_decoder(queries=queries, latents=latents).squeeze(-1) return logits def latents2mesh(self, latents: torch.FloatTensor, **kwargs): coarse_kwargs = copy.deepcopy(kwargs) coarse_kwargs["octree_resolution"] = 256 with synchronize_timer("Coarse Volume decoding"): coarse_grid_logits = self.volume_decoder( latents, self.geo_decoder, **coarse_kwargs ) with synchronize_timer("Coarse Surface extraction"): coarse_mesh = self.surface_extractor(coarse_grid_logits, **coarse_kwargs) assert len(coarse_mesh) == 1 bbox_gen_by_coarse_matching_cube_mesh = np.stack( [coarse_mesh[0].mesh_v.max(0), coarse_mesh[0].mesh_v.min(0)] ) bbox_gen_by_coarse_matching_cube_mesh_range = ( bbox_gen_by_coarse_matching_cube_mesh[0] - bbox_gen_by_coarse_matching_cube_mesh[1] ) # extend by 10% bbox_gen_by_coarse_matching_cube_mesh[0] += ( bbox_gen_by_coarse_matching_cube_mesh_range * 0.1 ) bbox_gen_by_coarse_matching_cube_mesh[1] -= ( bbox_gen_by_coarse_matching_cube_mesh_range * 0.1 ) with synchronize_timer("Fine-grained Volume decoding"): grid_logits = self.volume_decoder( latents, self.geo_decoder, bbox_corner=bbox_gen_by_coarse_matching_cube_mesh[None], **kwargs, ) with synchronize_timer("Fine-grained Surface extraction"): outputs = self.surface_extractor( grid_logits, bbox_corner=bbox_gen_by_coarse_matching_cube_mesh[None], **kwargs, ) return outputs def latent2mesh_2( self, latents: torch.FloatTensor, bounds: Union[Tuple[float], List[float], float] = 1.1, octree_depth: int = 7, num_chunks: int = 10000, mc_level: float = -1 / 512, octree_resolution: int = None, mc_mode: str = "mc", ) -> List[Latent2MeshOutput]: """ Args: latents: [bs, num_latents, dim] bounds: octree_depth: num_chunks: Returns: mesh_outputs (List[MeshOutput]): the mesh outputs list. """ outputs = [] geometric_func = partial(self.query_geometry, latents=latents) # 2. decode geometry device = latents.device if mc_mode == "dmc" and not hasattr(self, "diffdmc"): from diso import DiffDMC self.diffdmc = DiffDMC(dtype=torch.float32).to(device) mesh_v_f, has_surface = extract_geometry_fast( geometric_func=geometric_func, device=device, batch_size=len(latents), bounds=bounds, octree_depth=octree_depth, num_chunks=num_chunks, disable=False, mc_level=mc_level, octree_resolution=octree_resolution, diffdmc=self.diffdmc if mc_mode == "dmc" else None, mc_mode=mc_mode, ) # 3. decode texture for i, ((mesh_v, mesh_f), is_surface) in enumerate(zip(mesh_v_f, has_surface)): if not is_surface: outputs.append(None) continue out = Latent2MeshOutput() out.mesh_v = mesh_v out.mesh_f = mesh_f outputs.append(out) return outputs