Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,687 Bytes
0ca05b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
from pathlib import Path
import numpy as np
import torch
import moviepy.editor as mpy
from src.models.models.rasterization import GaussianSplatRenderer
from src.models.utils.sh_utils import RGB2SH, SH2RGB
from src.utils.gs_effects import GSEffects
from src.utils.color_map import apply_color_map_to_image
from tqdm import tqdm
def rotation_matrix_to_quaternion(R):
"""Convert rotation matrix to quaternion"""
trace = R[..., 0, 0] + R[..., 1, 1] + R[..., 2, 2]
q = torch.zeros(R.shape[:-2] + (4,), device=R.device, dtype=R.dtype)
# Case where trace > 0
mask1 = trace > 0
s = torch.sqrt(trace[mask1] + 1.0) * 2 # s=4*qw
q[mask1, 0] = 0.25 * s # qw
q[mask1, 1] = (R[mask1, 2, 1] - R[mask1, 1, 2]) / s # qx
q[mask1, 2] = (R[mask1, 0, 2] - R[mask1, 2, 0]) / s # qy
q[mask1, 3] = (R[mask1, 1, 0] - R[mask1, 0, 1]) / s # qz
# Case where R[0,0] > R[1,1] and R[0,0] > R[2,2]
mask2 = (~mask1) & (R[..., 0, 0] > R[..., 1, 1]) & (R[..., 0, 0] > R[..., 2, 2])
s = torch.sqrt(1.0 + R[mask2, 0, 0] - R[mask2, 1, 1] - R[mask2, 2, 2]) * 2 # s=4*qx
q[mask2, 0] = (R[mask2, 2, 1] - R[mask2, 1, 2]) / s # qw
q[mask2, 1] = 0.25 * s # qx
q[mask2, 2] = (R[mask2, 0, 1] + R[mask2, 1, 0]) / s # qy
q[mask2, 3] = (R[mask2, 0, 2] + R[mask2, 2, 0]) / s # qz
# Case where R[1,1] > R[2,2]
mask3 = (~mask1) & (~mask2) & (R[..., 1, 1] > R[..., 2, 2])
s = torch.sqrt(1.0 + R[mask3, 1, 1] - R[mask3, 0, 0] - R[mask3, 2, 2]) * 2 # s=4*qy
q[mask3, 0] = (R[mask3, 0, 2] - R[mask3, 2, 0]) / s # qw
q[mask3, 1] = (R[mask3, 0, 1] + R[mask3, 1, 0]) / s # qx
q[mask3, 2] = 0.25 * s # qy
q[mask3, 3] = (R[mask3, 1, 2] + R[mask3, 2, 1]) / s # qz
# Remaining case
mask4 = (~mask1) & (~mask2) & (~mask3)
s = torch.sqrt(1.0 + R[mask4, 2, 2] - R[mask4, 0, 0] - R[mask4, 1, 1]) * 2 # s=4*qz
q[mask4, 0] = (R[mask4, 1, 0] - R[mask4, 0, 1]) / s # qw
q[mask4, 1] = (R[mask4, 0, 2] + R[mask4, 2, 0]) / s # qx
q[mask4, 2] = (R[mask4, 1, 2] + R[mask4, 2, 1]) / s # qy
q[mask4, 3] = 0.25 * s # qz
return q
def quaternion_to_rotation_matrix(q):
"""Convert quaternion to rotation matrix"""
w, x, y, z = q[..., 0], q[..., 1], q[..., 2], q[..., 3]
# Normalize quaternion
norm = torch.sqrt(w*w + x*x + y*y + z*z)
w, x, y, z = w/norm, x/norm, y/norm, z/norm
R = torch.zeros(q.shape[:-1] + (3, 3), device=q.device, dtype=q.dtype)
R[..., 0, 0] = 1 - 2*(y*y + z*z)
R[..., 0, 1] = 2*(x*y - w*z)
R[..., 0, 2] = 2*(x*z + w*y)
R[..., 1, 0] = 2*(x*y + w*z)
R[..., 1, 1] = 1 - 2*(x*x + z*z)
R[..., 1, 2] = 2*(y*z - w*x)
R[..., 2, 0] = 2*(x*z - w*y)
R[..., 2, 1] = 2*(y*z + w*x)
R[..., 2, 2] = 1 - 2*(x*x + y*y)
return R
def slerp_quaternions(q1, q2, t):
"""Spherical linear interpolation between quaternions"""
# Compute dot product
dot = (q1 * q2).sum(dim=-1, keepdim=True)
# If dot product is negative, slerp won't take the shorter path.
# Note that q and -q represent the same rotation, so we can flip one.
mask = dot < 0
q2 = torch.where(mask, -q2, q2)
dot = torch.where(mask, -dot, dot)
# If the inputs are too close for comfort, linearly interpolate
# and normalize the result.
DOT_THRESHOLD = 0.9995
mask_linear = dot > DOT_THRESHOLD
result = torch.zeros_like(q1)
# Linear interpolation for close quaternions
if mask_linear.any():
result_linear = q1 + t * (q2 - q1)
norm = torch.norm(result_linear, dim=-1, keepdim=True)
result_linear = result_linear / norm
result = torch.where(mask_linear, result_linear, result)
# Spherical interpolation for distant quaternions
mask_slerp = ~mask_linear
if mask_slerp.any():
theta_0 = torch.acos(torch.abs(dot))
sin_theta_0 = torch.sin(theta_0)
theta = theta_0 * t
sin_theta = torch.sin(theta)
s0 = torch.cos(theta) - dot * sin_theta / sin_theta_0
s1 = sin_theta / sin_theta_0
result_slerp = (s0 * q1) + (s1 * q2)
result = torch.where(mask_slerp, result_slerp, result)
return result
def render_interpolated_video(gs_renderer: GaussianSplatRenderer,
splats: dict,
camtoworlds: torch.Tensor,
intrinsics: torch.Tensor,
hw: tuple[int, int],
out_path: Path,
interp_per_pair: int = 20,
loop_reverse: bool = True,
effects: GSEffects = None,
effect_type: int = 2,
save_mode: str = "split") -> None:
# camtoworlds: [B, S, 4, 4], intrinsics: [B, S, 3, 3]
b, s, _, _ = camtoworlds.shape
h, w = hw
# Build interpolated trajectory
def build_interpolated_traj(index, nums):
exts, ints = [], []
tmp_camtoworlds = camtoworlds[:, index]
tmp_intrinsics = intrinsics[:, index]
for i in range(len(index)-1):
exts.append(tmp_camtoworlds[:, i:i+1])
ints.append(tmp_intrinsics[:, i:i+1])
# Extract rotation and translation
R0, t0 = tmp_camtoworlds[:, i, :3, :3], tmp_camtoworlds[:, i, :3, 3]
R1, t1 = tmp_camtoworlds[:, i + 1, :3, :3], tmp_camtoworlds[:, i + 1, :3, 3]
# Convert rotations to quaternions
q0 = rotation_matrix_to_quaternion(R0)
q1 = rotation_matrix_to_quaternion(R1)
# Interpolate using smooth quaternion slerp
for j in range(1, nums + 1):
alpha = j / (nums + 1)
# Linear interpolation for translation
t_interp = (1 - alpha) * t0 + alpha * t1
# Spherical interpolation for rotation
q_interp = slerp_quaternions(q0, q1, alpha)
R_interp = quaternion_to_rotation_matrix(q_interp)
# Create interpolated extrinsic matrix
ext = torch.eye(4, device=R_interp.device, dtype=R_interp.dtype)[None].repeat(b, 1, 1)
ext[:, :3, :3] = R_interp
ext[:, :3, 3] = t_interp
# Linear interpolation for intrinsics
K0 = tmp_intrinsics[:, i]
K1 = tmp_intrinsics[:, i + 1]
K = (1 - alpha) * K0 + alpha * K1
exts.append(ext[:, None])
ints.append(K[:, None])
exts = torch.cat(exts, dim=1)[:1]
ints = torch.cat(ints, dim=1)[:1]
return exts, ints
# Build wobble trajectory
def build_wobble_traj(nums, delta):
assert s==1
t = torch.linspace(0, 1, nums, dtype=torch.float32, device=camtoworlds.device)
t = (torch.cos(torch.pi * (t + 1)) + 1) / 2
tf = torch.eye(4, dtype=torch.float32, device=camtoworlds.device)
radius = delta * 0.15
tf = tf.broadcast_to((*radius.shape, t.shape[0], 4, 4)).clone()
radius = radius[..., None]
radius = radius * t
tf[..., 0, 3] = torch.sin(2 * torch.pi * t) * radius
tf[..., 1, 3] = -torch.cos(2 * torch.pi * t) * radius
exts = camtoworlds @ tf
ints = intrinsics.repeat(1, exts.shape[1], 1, 1)
return exts, ints
if s > 1:
all_ext, all_int = build_interpolated_traj([i for i in range(s)], interp_per_pair)
else:
all_ext, all_int = build_wobble_traj(interp_per_pair * 12, splats["means"][0].median(dim=0).values.norm(dim=-1)[None])
rendered_rgbs, rendered_depths = [], []
chunk = 40 if effects is None else 1
t = 0
t_skip = 0
if effects is not None:
try:
pruned_splats = gs_renderer.prune_gs(splats, gs_renderer.voxel_size)
except:
pruned_splats = splats
# indices = [x for x in range(0, all_ext.shape[1], 2)][:4]
# add_ext, add_int = build_interpolated_traj(indices, 150)
# add_ext = torch.flip(add_ext, dims=[1])
# add_int = torch.flip(add_int, dims=[1])
add_ext = all_ext[:, :1, :, :].repeat(1, 320, 1, 1)
add_int = all_int[:, :1, :, :].repeat(1, 320, 1, 1)
shift = pruned_splats["means"][0].median(dim=0).values
scale_factor = (pruned_splats["means"][0] - shift).abs().quantile(0.95, dim=0).max()
all_ext[0, :, :3, -1] = (all_ext[0, :, :3, -1] - shift) / scale_factor
add_ext[0, :, :3, -1] = (add_ext[0, :, :3, -1] - shift) / scale_factor
flag = None
try:
raw_splats = gs_renderer.rasterizer.runner.splats
except:
pass
for st in range(0, add_ext.shape[1]):
ed = min(st + 1, add_ext.shape[1])
assert gs_renderer.sh_degree == 0
if flag is not None and (flag < 0.99).any():
break
sample_gsplat = {"means": (pruned_splats["means"][0] - shift)/scale_factor, "quats": pruned_splats["quats"][0], "scales": pruned_splats["scales"][0]/scale_factor,
"opacities": pruned_splats["opacities"][0],"colors": SH2RGB(pruned_splats["sh"][0].reshape(-1, 3))}
effects_splats, flag = effects.apply_effect(sample_gsplat, t, effect_type=effect_type)
t += 0.04
effects_splats["sh"] = RGB2SH(effects_splats["colors"]).reshape(-1, 1, 3)
try:
gs_renderer.rasterizer.runner.splats
effects_splats["sh0"] = effects_splats["sh"][:, :1, :]
effects_splats["shN"] = effects_splats["sh"][:, 1:, :]
effects_splats["scales"] = effects_splats["scales"].log()
effects_splats["opacities"] = torch.logit(torch.clamp(effects_splats["opacities"], 1e-6, 1 - 1e-6))
gs_renderer.rasterizer.runner.splats = effects_splats
colors, depths, _ = gs_renderer.rasterizer.rasterize_batches(
None, None, None,
None, None,
add_ext[:, st:ed].to(torch.float32), add_int[:, st:ed].to(torch.float32),
width=w, height=h, sh_degree=gs_renderer.sh_degree,
)
except:
colors, depths, _ = gs_renderer.rasterizer.rasterize_batches(
effects_splats["means"][None], effects_splats["quats"][None], effects_splats["scales"][None],
effects_splats["opacities"][None], effects_splats["sh"][None],
add_ext[:, st:ed].to(torch.float32), add_int[:, st:ed].to(torch.float32),
width=w, height=h, sh_degree=gs_renderer.sh_degree if "sh" in pruned_splats else None,
)
if st > add_ext.shape[1]*0.14:
t_skip = t if t_skip == 0 else t_skip
# break
rendered_rgbs.append(colors)
rendered_depths.append(depths)
# if (flag == 0).all():
# break
t_st = t
t_ed = 0
loop_dir = 1
ignore_scale = False
for st in tqdm(range(0, all_ext.shape[1], chunk)):
ed = min(st + chunk, all_ext.shape[1])
if effects is not None:
try:
sample_gsplat = {"means": (pruned_splats["means"][0] - shift)/scale_factor, "quats": pruned_splats["quats"][0], "scales": pruned_splats["scales"][0]/scale_factor,
"opacities": pruned_splats["opacities"][0],"colors": SH2RGB(pruned_splats["sh"][0].reshape(-1, 3))}
except:
sample_gsplat = {"means": (pruned_splats["means"][0] - shift)/scale_factor, "quats": pruned_splats["quats"][0], "scales": pruned_splats["scales"][0]/scale_factor,
"opacities": pruned_splats["opacities"][0],"colors": SH2RGB(pruned_splats["sh"][0].reshape(-1, 3))}
effects_splats, flag = effects.apply_effect(sample_gsplat, t, effect_type=effect_type, ignore_scale=ignore_scale)
if loop_dir < 0:
t -= 0.04
else:
t += 0.04
if flag.mean() < 0.01 and t_ed == 0:
t_ed = t
effects_splats["sh"] = RGB2SH(effects_splats["colors"]).reshape(-1, 1, 3)
effects_splats["sh0"] = effects_splats["sh"][:, :1, :]
effects_splats["shN"] = effects_splats["sh"][:, 1:, :]
try:
gs_renderer.rasterizer.runner.splats
effects_splats["sh0"] = effects_splats["sh"][:, :1, :]
effects_splats["shN"] = effects_splats["sh"][:, 1:, :]
effects_splats["scales"] = effects_splats["scales"].log()
effects_splats["opacities"] = torch.logit(torch.clamp(effects_splats["opacities"], 1e-6, 1 - 1e-6))
gs_renderer.rasterizer.runner.splats = effects_splats
colors, depths, _ = gs_renderer.rasterizer.rasterize_batches(
None, None, None,
None, None,
all_ext[:, st:ed].to(torch.float32), all_int[:, st:ed].to(torch.float32),
width=w, height=h, sh_degree=gs_renderer.sh_degree,
)
except:
colors, depths, _ = gs_renderer.rasterizer.rasterize_batches(
effects_splats["means"][None], effects_splats["quats"][None], effects_splats["scales"][None],
effects_splats["opacities"][None], effects_splats["sh"][None],
all_ext[:, st:ed].to(torch.float32), all_int[:, st:ed].to(torch.float32),
width=w, height=h, sh_degree=gs_renderer.sh_degree if "sh" in pruned_splats else None,
)
if t > (all_ext.shape[1]) * 0.04 + t_st - (t_ed - t_st)*2 - 15*0.04 or t < t_st:
# ignore_scale = True
loop_dir *= -1
t = t_ed if loop_dir == -1 else t
else:
colors, depths, _ = gs_renderer.rasterizer.rasterize_batches(
splats["means"][:1], splats["quats"][:1], splats["scales"][:1], splats["opacities"][:1],
splats["sh"][:1] if "sh" in splats else splats["colors"][:1],
all_ext[:, st:ed].to(torch.float32), all_int[:, st:ed].to(torch.float32),
width=w, height=h, sh_degree=gs_renderer.sh_degree if "sh" in splats else None,
)
rendered_rgbs.append(colors)
rendered_depths.append(depths)
rgbs = torch.cat(rendered_rgbs, dim=1)[0] # [N, H, W, 3]
depths = torch.cat(rendered_depths, dim=1)[0, ..., 0] # [N, H, W]
def depth_vis(d: torch.Tensor) -> torch.Tensor:
valid = d > 0
if valid.any():
near = d[valid].float().quantile(0.01).log()
else:
near = torch.tensor(0.0, device=d.device)
far = d.flatten().float().quantile(0.99).log()
x = d.float().clamp(min=1e-9).log()
x = 1.0 - (x - near) / (far - near + 1e-9)
return apply_color_map_to_image(x, "turbo")
frames = []
rgb_frames = []
depth_frames = []
for rgb, dep in zip(rgbs, depths):
rgb_img = rgb.permute(2, 0, 1) # [3, H, W]
depth_img = depth_vis(dep) # [3, H, W]
if save_mode == 'both':
combined = torch.cat([rgb_img, depth_img], dim=1) # [3, 2*H, W]
frames.append(combined)
elif save_mode == 'split':
rgb_frames.append(rgb_img)
depth_frames.append(depth_img)
else:
raise ValueError("save_mode must be 'both' or 'split'")
def _make_video(frames, path):
video = torch.stack(frames).clamp(0, 1) # [N, 3, H, W]
video = video.permute(0, 2, 3, 1) # [N, H, W, 3] for moviepy
video = (video * 255).to(torch.uint8).cpu().numpy()
if loop_reverse and video.shape[0] > 1:
video = np.concatenate([video, video[::-1][1:-1]], axis=0)
clip = mpy.ImageSequenceClip(list(video), fps=30)
clip.write_videofile(str(path), logger=None)
# Save videos
if save_mode == 'both':
_make_video(frames, f"{out_path}.mp4")
elif save_mode == 'split':
_make_video(rgb_frames, f"{out_path}_rgb.mp4")
_make_video(depth_frames, f"{out_path}_depth.mp4")
print(f"Video saved to {out_path} (mode: {save_mode})")
if effects is not None:
try:
gs_renderer.rasterizer.runner.splats = raw_splats
except:
pass
torch.cuda.empty_cache() |