File size: 2,942 Bytes
0ca05b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# References:
#   https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
#   https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py

import logging
import os
import warnings

from torch import Tensor
from torch import nn
import torch.nn.functional as F
import torch

# from torch.nn.attention import SDPBackend

XFORMERS_AVAILABLE = False


class Attention(nn.Module):
    def __init__(
        self,
        dim: int,
        num_heads: int = 8,
        qkv_bias: bool = True,
        proj_bias: bool = True,
        attn_drop: float = 0.0,
        proj_drop: float = 0.0,
        norm_layer: nn.Module = nn.LayerNorm,
        qk_norm: bool = False,
        fused_attn: bool = True,  # use F.scaled_dot_product_attention or not
        rope=None,
    ) -> None:
        super().__init__()
        assert dim % num_heads == 0, "dim should be divisible by num_heads"
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.scale = self.head_dim**-0.5
        self.fused_attn = fused_attn

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim, bias=proj_bias)
        self.proj_drop = nn.Dropout(proj_drop)
        self.rope = rope

    def forward(self, x: Tensor, pos=None) -> Tensor:
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
        q, k, v = qkv.unbind(0)
        q, k = self.q_norm(q), self.k_norm(k)

        if self.rope is not None:
            q = self.rope(q, pos)
            k = self.rope(k, pos)

        # orig_dtype = q.dtype
        x = F.scaled_dot_product_attention(q, k, v, dropout_p=self.attn_drop.p if self.training else 0.0)

        # with torch.cuda.amp.autocast(dtype=torch.bfloat16):
        #     with nn.attention.sdpa_kernel(SDPBackend.FLASH_ATTENTION):
        # if x.dtype != orig_dtype:
        #     x = x.to(orig_dtype)

        x = x.transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class MemEffAttention(Attention):
    def forward(self, x: Tensor, attn_bias=None, pos=None) -> Tensor:
        assert pos is None
        if not XFORMERS_AVAILABLE:
            if attn_bias is not None:
                raise AssertionError("xFormers is required for using nested tensors")
            return super().forward(x)

        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)

        q, k, v = unbind(qkv, 2)

        x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
        x = x.reshape([B, N, C])

        x = self.proj(x)
        x = self.proj_drop(x)
        return x