Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,169 Bytes
0ca05b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
"""
Utilities for geometry operations.
References: DUSt3R, MoGe
"""
from numbers import Number
from typing import Tuple, Union
import numpy as np
from src.utils.warnings import no_warnings
def colmap_to_opencv_intrinsics(K):
"""
Modify camera intrinsics to follow a different convention.
Coordinates of the center of the top-left pixels are by default:
- (0.5, 0.5) in Colmap
- (0,0) in OpenCV
"""
K = K.copy()
K[0, 2] -= 0.5
K[1, 2] -= 0.5
return K
def opencv_to_colmap_intrinsics(K):
"""
Modify camera intrinsics to follow a different convention.
Coordinates of the center of the top-left pixels are by default:
- (0.5, 0.5) in Colmap
- (0,0) in OpenCV
"""
K = K.copy()
K[0, 2] += 0.5
K[1, 2] += 0.5
return K
def angle_diff_vec3_numpy(v1: np.ndarray, v2: np.ndarray, eps: float = 1e-12):
"""
Compute angle difference between 3D vectors using NumPy.
Args:
v1 (np.ndarray): First vector of shape (..., 3)
v2 (np.ndarray): Second vector of shape (..., 3)
eps (float, optional): Small epsilon value for numerical stability. Defaults to 1e-12.
Returns:
np.ndarray: Angle differences in radians
"""
return np.arctan2(
np.linalg.norm(np.cross(v1, v2, axis=-1), axis=-1) + eps, (v1 * v2).sum(axis=-1)
)
@no_warnings(category=RuntimeWarning)
def points_to_normals(
point: np.ndarray, mask: np.ndarray = None, edge_threshold: float = None
) -> np.ndarray:
"""
Calculate normal map from point map. Value range is [-1, 1].
Args:
point (np.ndarray): shape (height, width, 3), point map
mask (optional, np.ndarray): shape (height, width), dtype=bool. Mask of valid depth pixels. Defaults to None.
edge_threshold (optional, float): threshold for the angle (in degrees) between the normal and the view direction. Defaults to None.
Returns:
normal (np.ndarray): shape (height, width, 3), normal map.
"""
height, width = point.shape[-3:-1]
has_mask = mask is not None
if mask is None:
mask = np.ones_like(point[..., 0], dtype=bool)
mask_pad = np.zeros((height + 2, width + 2), dtype=bool)
mask_pad[1:-1, 1:-1] = mask
mask = mask_pad
pts = np.zeros((height + 2, width + 2, 3), dtype=point.dtype)
pts[1:-1, 1:-1, :] = point
up = pts[:-2, 1:-1, :] - pts[1:-1, 1:-1, :]
left = pts[1:-1, :-2, :] - pts[1:-1, 1:-1, :]
down = pts[2:, 1:-1, :] - pts[1:-1, 1:-1, :]
right = pts[1:-1, 2:, :] - pts[1:-1, 1:-1, :]
normal = np.stack(
[
np.cross(up, left, axis=-1),
np.cross(left, down, axis=-1),
np.cross(down, right, axis=-1),
np.cross(right, up, axis=-1),
]
)
normal = normal / (np.linalg.norm(normal, axis=-1, keepdims=True) + 1e-12)
valid = (
np.stack(
[
mask[:-2, 1:-1] & mask[1:-1, :-2],
mask[1:-1, :-2] & mask[2:, 1:-1],
mask[2:, 1:-1] & mask[1:-1, 2:],
mask[1:-1, 2:] & mask[:-2, 1:-1],
]
)
& mask[None, 1:-1, 1:-1]
)
if edge_threshold is not None:
view_angle = angle_diff_vec3_numpy(pts[None, 1:-1, 1:-1, :], normal)
view_angle = np.minimum(view_angle, np.pi - view_angle)
valid = valid & (view_angle < np.deg2rad(edge_threshold))
normal = (normal * valid[..., None]).sum(axis=0)
normal = normal / (np.linalg.norm(normal, axis=-1, keepdims=True) + 1e-12)
if has_mask:
normal_mask = valid.any(axis=0)
normal = np.where(normal_mask[..., None], normal, 0)
return normal, normal_mask
else:
return normal
def sliding_window_1d(x: np.ndarray, window_size: int, stride: int, axis: int = -1):
"""
Create a sliding window view of the input array along a specified axis.
This function creates a memory-efficient view of the input array with sliding windows
of the specified size and stride. The window dimension is appended to the end of the
output array's shape. This is useful for operations like convolution, pooling, or
any analysis that requires examining local neighborhoods in the data.
Args:
x (np.ndarray): Input array with shape (..., axis_size, ...)
window_size (int): Size of the sliding window
stride (int): Stride of the sliding window (step size between consecutive windows)
axis (int, optional): Axis to perform sliding window over. Defaults to -1 (last axis)
Returns:
np.ndarray: View of the input array with shape (..., n_windows, ..., window_size),
where n_windows = (axis_size - window_size + 1) // stride
Raises:
AssertionError: If window_size is larger than the size of the specified axis
Example:
>>> x = np.array([1, 2, 3, 4, 5, 6])
>>> sliding_window_1d(x, window_size=3, stride=2)
array([[1, 2, 3],
[3, 4, 5]])
"""
assert x.shape[axis] >= window_size, (
f"kernel_size ({window_size}) is larger than axis_size ({x.shape[axis]})"
)
axis = axis % x.ndim
shape = (
*x.shape[:axis],
(x.shape[axis] - window_size + 1) // stride,
*x.shape[axis + 1 :],
window_size,
)
strides = (
*x.strides[:axis],
stride * x.strides[axis],
*x.strides[axis + 1 :],
x.strides[axis],
)
x_sliding = np.lib.stride_tricks.as_strided(x, shape=shape, strides=strides)
return x_sliding
def sliding_window_nd(
x: np.ndarray,
window_size: Tuple[int, ...],
stride: Tuple[int, ...],
axis: Tuple[int, ...],
) -> np.ndarray:
"""
Create sliding windows along multiple dimensions of the input array.
This function applies sliding_window_1d sequentially along multiple axes to create
N-dimensional sliding windows. This is useful for operations that need to examine
local neighborhoods in multiple dimensions simultaneously.
Args:
x (np.ndarray): Input array
window_size (Tuple[int, ...]): Size of the sliding window for each axis
stride (Tuple[int, ...]): Stride of the sliding window for each axis
axis (Tuple[int, ...]): Axes to perform sliding window over
Returns:
np.ndarray: Array with sliding windows along the specified dimensions.
The window dimensions are appended to the end of the shape.
Note:
The length of window_size, stride, and axis tuples must be equal.
Example:
>>> x = np.random.rand(10, 10)
>>> windows = sliding_window_nd(x, window_size=(3, 3), stride=(2, 2), axis=(-2, -1))
>>> # Creates 3x3 sliding windows with stride 2 in both dimensions
"""
axis = [axis[i] % x.ndim for i in range(len(axis))]
for i in range(len(axis)):
x = sliding_window_1d(x, window_size[i], stride[i], axis[i])
return x
def sliding_window_2d(
x: np.ndarray,
window_size: Union[int, Tuple[int, int]],
stride: Union[int, Tuple[int, int]],
axis: Tuple[int, int] = (-2, -1),
) -> np.ndarray:
"""
Create 2D sliding windows over the input array.
Convenience function for creating 2D sliding windows, commonly used for image
processing operations like convolution, pooling, or patch extraction.
Args:
x (np.ndarray): Input array
window_size (Union[int, Tuple[int, int]]): Size of the 2D sliding window.
If int, same size is used for both dimensions.
stride (Union[int, Tuple[int, int]]): Stride of the 2D sliding window.
If int, same stride is used for both dimensions.
axis (Tuple[int, int], optional): Two axes to perform sliding window over.
Defaults to (-2, -1) (last two dimensions).
Returns:
np.ndarray: Array with 2D sliding windows. The window dimensions (height, width)
are appended to the end of the shape.
Example:
>>> image = np.random.rand(100, 100)
>>> patches = sliding_window_2d(image, window_size=8, stride=4)
>>> # Creates 8x8 patches with stride 4 from the image
"""
if isinstance(window_size, int):
window_size = (window_size, window_size)
if isinstance(stride, int):
stride = (stride, stride)
return sliding_window_nd(x, window_size, stride, axis)
def max_pool_1d(
x: np.ndarray, kernel_size: int, stride: int, padding: int = 0, axis: int = -1
):
"""
Perform 1D max pooling on the input array.
Max pooling reduces the dimensionality of the input by taking the maximum value
within each sliding window. This is commonly used in neural networks and signal
processing for downsampling and feature extraction.
Args:
x (np.ndarray): Input array
kernel_size (int): Size of the pooling kernel
stride (int): Stride of the pooling operation
padding (int, optional): Amount of padding to add on both sides. Defaults to 0.
axis (int, optional): Axis to perform max pooling over. Defaults to -1.
Returns:
np.ndarray: Max pooled array with reduced size along the specified axis
Note:
- For floating point arrays, padding is done with np.nan values
- For integer arrays, padding is done with the minimum value of the dtype
- np.nanmax is used to handle NaN values in the computation
Example:
>>> x = np.array([1, 3, 2, 4, 5, 1, 2])
>>> max_pool_1d(x, kernel_size=3, stride=2)
array([3, 5, 2])
"""
axis = axis % x.ndim
if padding > 0:
fill_value = np.nan if x.dtype.kind == "f" else np.iinfo(x.dtype).min
padding_arr = np.full(
(*x.shape[:axis], padding, *x.shape[axis + 1 :]),
fill_value=fill_value,
dtype=x.dtype,
)
x = np.concatenate([padding_arr, x, padding_arr], axis=axis)
a_sliding = sliding_window_1d(x, kernel_size, stride, axis)
max_pool = np.nanmax(a_sliding, axis=-1)
return max_pool
def max_pool_nd(
x: np.ndarray,
kernel_size: Tuple[int, ...],
stride: Tuple[int, ...],
padding: Tuple[int, ...],
axis: Tuple[int, ...],
) -> np.ndarray:
"""
Perform N-dimensional max pooling on the input array.
This function applies max_pool_1d sequentially along multiple axes to perform
multi-dimensional max pooling. This is useful for downsampling multi-dimensional
data while preserving the most important features.
Args:
x (np.ndarray): Input array
kernel_size (Tuple[int, ...]): Size of the pooling kernel for each axis
stride (Tuple[int, ...]): Stride of the pooling operation for each axis
padding (Tuple[int, ...]): Amount of padding for each axis
axis (Tuple[int, ...]): Axes to perform max pooling over
Returns:
np.ndarray: Max pooled array with reduced size along the specified axes
Note:
The length of kernel_size, stride, padding, and axis tuples must be equal.
Max pooling is applied sequentially along each axis in the order specified.
Example:
>>> x = np.random.rand(10, 10, 10)
>>> pooled = max_pool_nd(x, kernel_size=(2, 2, 2), stride=(2, 2, 2),
... padding=(0, 0, 0), axis=(-3, -2, -1))
>>> # Reduces each dimension by half with 2x2x2 max pooling
"""
for i in range(len(axis)):
x = max_pool_1d(x, kernel_size[i], stride[i], padding[i], axis[i])
return x
def max_pool_2d(
x: np.ndarray,
kernel_size: Union[int, Tuple[int, int]],
stride: Union[int, Tuple[int, int]],
padding: Union[int, Tuple[int, int]],
axis: Tuple[int, int] = (-2, -1),
):
"""
Perform 2D max pooling on the input array.
Convenience function for 2D max pooling, commonly used in computer vision
and image processing for downsampling images while preserving important features.
Args:
x (np.ndarray): Input array
kernel_size (Union[int, Tuple[int, int]]): Size of the 2D pooling kernel.
If int, same size is used for both dimensions.
stride (Union[int, Tuple[int, int]]): Stride of the 2D pooling operation.
If int, same stride is used for both dimensions.
padding (Union[int, Tuple[int, int]]): Amount of padding for both dimensions.
If int, same padding is used for both dimensions.
axis (Tuple[int, int], optional): Two axes to perform max pooling over.
Defaults to (-2, -1) (last two dimensions).
Returns:
np.ndarray: 2D max pooled array with reduced size along the specified axes
Example:
>>> image = np.random.rand(64, 64)
>>> pooled = max_pool_2d(image, kernel_size=2, stride=2, padding=0)
>>> # Reduces image size from 64x64 to 32x32 with 2x2 max pooling
"""
if isinstance(kernel_size, Number):
kernel_size = (kernel_size, kernel_size)
if isinstance(stride, Number):
stride = (stride, stride)
if isinstance(padding, Number):
padding = (padding, padding)
axis = tuple(axis)
return max_pool_nd(x, kernel_size, stride, padding, axis)
@no_warnings(category=RuntimeWarning)
def depth_edge(
depth: np.ndarray,
atol: float = None,
rtol: float = None,
kernel_size: int = 3,
mask: np.ndarray = None,
) -> np.ndarray:
"""
Compute the edge mask from depth map. The edge is defined as the pixels whose neighbors have large difference in depth.
Args:
depth (np.ndarray): shape (..., height, width), linear depth map
atol (float): absolute tolerance
rtol (float): relative tolerance
Returns:
edge (np.ndarray): shape (..., height, width) of dtype torch.bool
"""
if mask is None:
diff = max_pool_2d(
depth, kernel_size, stride=1, padding=kernel_size // 2
) + max_pool_2d(-depth, kernel_size, stride=1, padding=kernel_size // 2)
else:
diff = max_pool_2d(
np.where(mask, depth, -np.inf),
kernel_size,
stride=1,
padding=kernel_size // 2,
) + max_pool_2d(
np.where(mask, -depth, -np.inf),
kernel_size,
stride=1,
padding=kernel_size // 2,
)
edge = np.zeros_like(depth, dtype=bool)
if atol is not None:
edge |= diff > atol
if rtol is not None:
edge |= diff / depth > rtol
return edge
def depth_aliasing(
depth: np.ndarray,
atol: float = None,
rtol: float = None,
kernel_size: int = 3,
mask: np.ndarray = None,
) -> np.ndarray:
"""
Compute the map that indicates the aliasing of x depth map. The aliasing is defined as the pixels which neither close to the maximum nor the minimum of its neighbors.
Args:
depth (np.ndarray): shape (..., height, width), linear depth map
atol (float): absolute tolerance
rtol (float): relative tolerance
Returns:
edge (np.ndarray): shape (..., height, width) of dtype torch.bool
"""
if mask is None:
diff_max = (
max_pool_2d(depth, kernel_size, stride=1, padding=kernel_size // 2) - depth
)
diff_min = (
max_pool_2d(-depth, kernel_size, stride=1, padding=kernel_size // 2) + depth
)
else:
diff_max = (
max_pool_2d(
np.where(mask, depth, -np.inf),
kernel_size,
stride=1,
padding=kernel_size // 2,
)
- depth
)
diff_min = (
max_pool_2d(
np.where(mask, -depth, -np.inf),
kernel_size,
stride=1,
padding=kernel_size // 2,
)
+ depth
)
diff = np.minimum(diff_max, diff_min)
edge = np.zeros_like(depth, dtype=bool)
if atol is not None:
edge |= diff > atol
if rtol is not None:
edge |= diff / depth > rtol
return edge
@no_warnings(category=RuntimeWarning)
def normals_edge(
normals: np.ndarray, tol: float, kernel_size: int = 3, mask: np.ndarray = None
) -> np.ndarray:
"""
Compute the edge mask from normal map.
Args:
normal (np.ndarray): shape (..., height, width, 3), normal map
tol (float): tolerance in degrees
Returns:
edge (np.ndarray): shape (..., height, width) of dtype torch.bool
"""
assert normals.ndim >= 3 and normals.shape[-1] == 3, (
"normal should be of shape (..., height, width, 3)"
)
normals = normals / (np.linalg.norm(normals, axis=-1, keepdims=True) + 1e-12)
padding = kernel_size // 2
normals_window = sliding_window_2d(
np.pad(
normals,
(
*([(0, 0)] * (normals.ndim - 3)),
(padding, padding),
(padding, padding),
(0, 0),
),
mode="edge",
),
window_size=kernel_size,
stride=1,
axis=(-3, -2),
)
if mask is None:
angle_diff = np.arccos(
(normals[..., None, None] * normals_window).sum(axis=-3)
).max(axis=(-2, -1))
else:
mask_window = sliding_window_2d(
np.pad(
mask,
(*([(0, 0)] * (mask.ndim - 3)), (padding, padding), (padding, padding)),
mode="edge",
),
window_size=kernel_size,
stride=1,
axis=(-3, -2),
)
angle_diff = np.where(
mask_window,
np.arccos((normals[..., None, None] * normals_window).sum(axis=-3)),
0,
).max(axis=(-2, -1))
angle_diff = max_pool_2d(
angle_diff, kernel_size, stride=1, padding=kernel_size // 2
)
edge = angle_diff > np.deg2rad(tol)
return edge
|