Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,943 Bytes
0ca05b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 |
# wzw
""" Visual utilities for HuggingFace integration.
References: https://github.com/facebookresearch/vggt
"""
import copy
import os
from typing import Tuple
import cv2
import matplotlib
import numpy as np
import requests
import trimesh
from scipy.spatial.transform import Rotation
def segment_sky(image_path, onnx_session):
"""
Segments sky from an image using an ONNX model.
Thanks for the great model provided by https://github.com/xiongzhu666/Sky-Segmentation-and-Post-processing
Args:
image_path: Path to input image
onnx_session: ONNX runtime session with loaded model
Returns:
np.ndarray: Binary mask where 255 indicates non-sky regions
"""
image = cv2.imread(image_path)
result_map = run_skyseg(onnx_session, [320, 320], image)
# resize the result_map to the original image size
result_map_original = cv2.resize(result_map, (image.shape[1], image.shape[0]))
# Fix: Invert the mask so that 255 = non-sky, 0 = sky
# The model outputs low values for sky, high values for non-sky
output_mask = np.zeros_like(result_map_original)
output_mask[result_map_original < 32] = 255 # Use threshold of 32
return output_mask
def run_skyseg(onnx_session, input_size, image):
"""
Runs sky segmentation inference using ONNX model.
Args:
onnx_session: ONNX runtime session
input_size: Target size for model input (width, height)
image: Input image in BGR format
Returns:
np.ndarray: Segmentation mask
"""
# Pre process:Resize, BGR->RGB, Transpose, PyTorch standardization, float32 cast
temp_image = copy.deepcopy(image)
resize_image = cv2.resize(temp_image, dsize=(input_size[0], input_size[1]))
x = cv2.cvtColor(resize_image, cv2.COLOR_BGR2RGB)
x = np.array(x, dtype=np.float32)
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
x = (x / 255 - mean) / std
x = x.transpose(2, 0, 1)
x = x.reshape(-1, 3, input_size[0], input_size[1]).astype("float32")
# Inference
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name
onnx_result = onnx_session.run([output_name], {input_name: x})
# Post process
onnx_result = np.array(onnx_result).squeeze()
min_value = np.min(onnx_result)
max_value = np.max(onnx_result)
onnx_result = (onnx_result - min_value) / (max_value - min_value)
onnx_result *= 255
onnx_result = onnx_result.astype("uint8")
return onnx_result
def download_file_from_url(url, filename):
"""Downloads a file from a Hugging Face model repo, handling redirects."""
try:
# Get the redirect URL
response = requests.get(url, allow_redirects=False)
response.raise_for_status() # Raise HTTPError for bad requests (4xx or 5xx)
if response.status_code == 302: # Expecting a redirect
redirect_url = response.headers["Location"]
response = requests.get(redirect_url, stream=True)
response.raise_for_status()
else:
print(f"Unexpected status code: {response.status_code}")
return
with open(filename, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
print(f"Downloaded {filename} successfully.")
except requests.exceptions.RequestException as e:
print(f"Error downloading file: {e}")
def create_image_mesh(
*image_data: np.ndarray,
mask: np.ndarray = None,
triangulate: bool = False,
return_vertex_indices: bool = False,
) -> Tuple[np.ndarray, ...]:
"""
Create a mesh from image data using pixel coordinates as vertices and grid connections as faces.
Args:
*image_data (np.ndarray): Image arrays with shape (height, width, [channels])
mask (np.ndarray, optional): Boolean mask with shape (height, width). Defaults to None.
triangulate (bool): Convert quad faces to triangular faces. Defaults to False.
return_vertex_indices (bool): Include vertex indices in output. Defaults to False.
Returns:
faces (np.ndarray): Face connectivity array. Shape (N, 4) for quads or (N, 3) for triangles
*vertex_data (np.ndarray): Vertex attributes corresponding to input image_data
vertex_indices (np.ndarray, optional): Original vertex indices if return_vertex_indices=True
"""
# Validate inputs
assert (len(image_data) > 0) or (mask is not None), "Need at least one image or mask"
if mask is None:
height, width = image_data[0].shape[:2]
else:
height, width = mask.shape
# Check all images have same dimensions
for img in image_data:
assert img.shape[:2] == (height, width), "All images must have same height and width"
# Create quad faces connecting neighboring pixels
base_quad = np.stack([
np.arange(0, width - 1, dtype=np.int32), # bottom-left
np.arange(width, 2 * width - 1, dtype=np.int32), # top-left
np.arange(1 + width, 2 * width, dtype=np.int32), # top-right
np.arange(1, width, dtype=np.int32), # bottom-right
], axis=1)
# Replicate quad pattern for all rows
row_offsets = np.arange(0, (height - 1) * width, width, dtype=np.int32)
faces = (row_offsets[:, None, None] + base_quad[None, :, :]).reshape((-1, 4))
if mask is None:
# No masking - use all faces and vertices
if triangulate:
faces = _convert_quads_to_triangles(faces)
output = [faces]
for img in image_data:
output.append(img.reshape(-1, *img.shape[2:]))
if return_vertex_indices:
output.append(np.arange(height * width, dtype=np.int32))
return tuple(output)
else:
# Apply mask - only keep faces where all 4 corners are valid
valid_quads = (
mask[:-1, :-1] & mask[1:, :-1] &
mask[1:, 1:] & mask[:-1, 1:]
).ravel()
faces = faces[valid_quads]
if triangulate:
faces = _convert_quads_to_triangles(faces)
# Remove unused vertices and remap face indices
num_face_vertices = faces.shape[-1]
unique_vertices, remapped_indices = np.unique(faces, return_inverse=True)
faces = remapped_indices.astype(np.int32).reshape(-1, num_face_vertices)
output = [faces]
for img in image_data:
flattened_img = img.reshape(-1, *img.shape[2:])
output.append(flattened_img[unique_vertices])
if return_vertex_indices:
output.append(unique_vertices)
return tuple(output)
def _convert_quads_to_triangles(quad_faces: np.ndarray) -> np.ndarray:
"""Convert quadrilateral faces to triangular faces."""
if quad_faces.shape[-1] == 3:
return quad_faces # Already triangular
num_vertices_per_face = quad_faces.shape[-1]
triangle_indices = np.stack([
np.zeros(num_vertices_per_face - 2, dtype=int), # First vertex
np.arange(1, num_vertices_per_face - 1, dtype=int), # Sequential vertices
np.arange(2, num_vertices_per_face, dtype=int), # Next sequential vertices
], axis=1)
return quad_faces[:, triangle_indices].reshape((-1, 3))
def convert_predictions_to_glb_scene(
predictions,
filter_by_frames="all",
show_camera=True,
mask_sky_bg=False,
mask_ambiguous=False,
as_mesh=True,
) -> trimesh.Scene:
"""
Converts model predictions to a 3D scene represented as a GLB file.
Args:
predictions (dict): Dictionary containing model predictions with keys:
- world_points: 3D point coordinates (S, H, W, 3)
- images: Input images (S, H, W, 3)
- camera_poses: Camera extrinsic matrices (S, 3, 4)
filter_by_frames (str): Frame filter specification (default: "all")
show_camera (bool): Include camera visualization (default: True)
mask_sky_bg (bool): Mask out sky background pixels (default: False)
mask_ambiguous (bool): Apply final mask to filter ambiguous predictions (default: False)
as_mesh (bool): Represent the data as a mesh instead of point cloud (default: False)
Returns:
trimesh.Scene: Processed 3D scene containing point cloud/mesh and cameras
Raises:
ValueError: If input predictions structure is invalid
"""
if not isinstance(predictions, dict):
raise ValueError("predictions must be a dictionary")
print("Building GLB scene")
# Parse frame selection from filter string
target_frame_index = None
if filter_by_frames not in ["all", "All"]:
try:
# Extract numeric index before colon separator
target_frame_index = int(filter_by_frames.split(":")[0])
except (ValueError, IndexError):
pass
# Validate required data in predictions
print("Using Pointmap Branch")
if "world_points" not in predictions:
raise ValueError(
"world_points not found in predictions. Pointmap Branch requires 'world_points' key. "
"Depthmap and Camera branches have been removed."
)
# Extract prediction data
point_cloud_3d = predictions["world_points"]
input_images = predictions["images"]
extrinsic_matrices = predictions["camera_poses"]
ambiguity_mask = predictions["final_mask"]
sky_region_mask = predictions["sky_mask"]
# Filter to single frame if specified
if target_frame_index is not None:
point_cloud_3d = point_cloud_3d[target_frame_index][None]
input_images = input_images[target_frame_index][None]
extrinsic_matrices = extrinsic_matrices[target_frame_index][None]
ambiguity_mask = ambiguity_mask[target_frame_index][None]
sky_region_mask = sky_region_mask[target_frame_index][None]
# Flatten 3D points to vertex array
flattened_vertices = point_cloud_3d.reshape(-1, 3)
# Convert images to RGB color array
if input_images.ndim == 4 and input_images.shape[1] == 3: # NCHW format
rgb_colors = np.transpose(input_images, (0, 2, 3, 1))
else: # Already in NHWC format
rgb_colors = input_images
rgb_colors = (rgb_colors.reshape(-1, 3) * 255).astype(np.uint8)
# Build composite filtering mask
valid_points_mask = np.ones(len(flattened_vertices), dtype=bool)
# Apply ambiguity filtering if requested
if mask_ambiguous:
flat_ambiguity_mask = ambiguity_mask.reshape(-1)
valid_points_mask = valid_points_mask & flat_ambiguity_mask
# Apply sky region filtering if requested
if mask_sky_bg:
flat_sky_mask = sky_region_mask.reshape(-1)
valid_points_mask = valid_points_mask & flat_sky_mask
# Apply mask to filter vertices and colors
filtered_vertices = flattened_vertices[valid_points_mask].copy()
filtered_colors = rgb_colors[valid_points_mask].copy()
# Handle empty geometry case
if filtered_vertices is None or np.asarray(filtered_vertices).size == 0:
filtered_vertices = np.array([[1, 0, 0]])
filtered_colors = np.array([[255, 255, 255]])
scene_scale_factor = 1
else:
# Compute scene scale from percentile-based bounding box
percentile_lower = np.percentile(filtered_vertices, 5, axis=0)
percentile_upper = np.percentile(filtered_vertices, 95, axis=0)
scene_scale_factor = np.linalg.norm(percentile_upper - percentile_lower)
# Initialize color mapping for cameras
color_palette = matplotlib.colormaps.get_cmap("gist_rainbow")
# Create empty 3D scene container
output_scene = trimesh.Scene()
# Add geometry to scene based on representation type
if as_mesh:
# Mesh representation
if target_frame_index is not None:
# Single frame mesh generation
frame_height, frame_width = point_cloud_3d.shape[1:3]
# Prepare unfiltered data for mesh construction
structured_points = point_cloud_3d.reshape(frame_height, frame_width, 3)
# Convert image data to proper format
if input_images.ndim == 4 and input_images.shape[1] == 3: # NCHW format
structured_colors = np.transpose(input_images[0], (1, 2, 0))
else: # Already in HWC format
structured_colors = input_images[0]
structured_colors *= 255
# Get structured mask for mesh creation
structured_mask = predictions["final_mask"][target_frame_index].reshape(
frame_height, frame_width
)
# Build filtering mask
mesh_filter_mask = structured_mask
# Check for normal data availability
mesh_normals = None
if "normal" in predictions and predictions["normal"] is not None:
# Extract normals for selected frame
frame_normal_data = (
predictions["normal"][target_frame_index]
if target_frame_index is not None
else predictions["normal"][0]
)
# Generate mesh with normal information
mesh_faces, mesh_vertices, mesh_colors, mesh_normals = create_image_mesh(
structured_points * np.array([1, -1, 1], dtype=np.float32),
structured_colors / 255.0,
frame_normal_data * np.array([1, -1, 1], dtype=np.float32),
mask=mesh_filter_mask,
triangulate=True,
return_vertex_indices=False,
)
# Apply coordinate system transformation to normals
mesh_normals = mesh_normals * np.array([1, -1, 1], dtype=np.float32)
else:
# Generate mesh without normal information
mesh_faces, mesh_vertices, mesh_colors = create_image_mesh(
structured_points * np.array([1, -1, 1], dtype=np.float32),
structured_colors / 255.0,
mask=mesh_filter_mask,
triangulate=True,
return_vertex_indices=False,
)
# Construct trimesh object with optional normals
geometry_mesh = trimesh.Trimesh(
vertices=mesh_vertices * np.array([1, -1, 1], dtype=np.float32),
faces=mesh_faces,
vertex_colors=(mesh_colors * 255).astype(np.uint8),
vertex_normals=(mesh_normals if mesh_normals is not None else None),
process=False,
)
output_scene.add_geometry(geometry_mesh)
else:
# Multi-frame mesh generation
print("Creating mesh for multi-frame data...")
for frame_idx in range(point_cloud_3d.shape[0]):
frame_height, frame_width = point_cloud_3d.shape[1:3]
# Extract per-frame data
frame_point_data = point_cloud_3d[frame_idx]
frame_ambiguity_mask = predictions["final_mask"][frame_idx]
frame_sky_mask = predictions["sky_mask"][frame_idx]
# Extract frame image data
if input_images.ndim == 4 and input_images.shape[1] == 3: # NCHW format
frame_image_data = np.transpose(input_images[frame_idx], (1, 2, 0))
else: # Already in HWC format
frame_image_data = input_images[frame_idx]
frame_image_data *= 255
# Build per-frame filtering mask
frame_filter_mask = np.ones((frame_height, frame_width), dtype=bool)
# Apply ambiguity filtering if enabled
if mask_ambiguous:
frame_filter_mask = frame_filter_mask & frame_ambiguity_mask
# Apply sky filtering if enabled
if mask_sky_bg:
frame_filter_mask = frame_filter_mask & frame_sky_mask
# Generate mesh for current frame
frame_faces, frame_vertices, frame_colors = create_image_mesh(
frame_point_data * np.array([1, -1, 1], dtype=np.float32),
frame_image_data / 255.0,
mask=frame_filter_mask,
triangulate=True,
return_vertex_indices=False,
)
frame_vertices = frame_vertices * np.array([1, -1, 1], dtype=np.float32)
# Create trimesh object for current frame
frame_geometry = trimesh.Trimesh(
vertices=frame_vertices,
faces=frame_faces,
vertex_colors=(frame_colors * 255).astype(np.uint8),
process=False,
)
output_scene.add_geometry(frame_geometry)
else:
# Point cloud representation
point_cloud_geometry = trimesh.PointCloud(vertices=filtered_vertices, colors=filtered_colors)
output_scene.add_geometry(point_cloud_geometry)
# Add camera visualizations if requested
num_camera_views = len(extrinsic_matrices)
if show_camera:
# Iterate through all camera views
for camera_idx in range(num_camera_views):
camera_extrinsic = extrinsic_matrices[camera_idx]
camera_color_rgba = color_palette(camera_idx / num_camera_views)
camera_color_rgb = tuple(int(255 * x) for x in camera_color_rgba[:3])
integrate_camera_into_scene(
output_scene, camera_extrinsic, camera_color_rgb, scene_scale_factor
)
# Define coordinate system transformation matrices
opengl_transform = np.eye(4)
opengl_transform[1, 1] = -1 # Flip Y axis
opengl_transform[2, 2] = -1 # Flip Z axis
# Define alignment rotation (180 degrees around Y-axis)
alignment_rotation = np.eye(4)
alignment_rotation[:3, :3] = Rotation.from_euler("y", 0, degrees=True).as_matrix()
# Compute and apply final transformation
scene_transformation = (
np.linalg.inv(extrinsic_matrices[0])
@ opengl_transform
@ alignment_rotation
)
output_scene.apply_transform(scene_transformation)
print("GLB Scene built")
return output_scene
def integrate_camera_into_scene(
scene: trimesh.Scene,
camera_transform: np.ndarray,
camera_color: tuple,
scale_factor: float,
):
"""
Adds a camera visualization mesh to the 3D scene.
Args:
scene (trimesh.Scene): The 3D scene to add the camera visualization.
camera_transform (np.ndarray): 4x4 transformation matrix for camera positioning.
camera_color (tuple): RGB color tuple for the camera mesh.
scale_factor (float): Scaling factor for the camera size relative to scene.
"""
# Define camera dimensions based on scene scale
camera_base_width = scale_factor * 0.05
camera_cone_height = scale_factor * 0.1
# Create base cone geometry for camera representation
base_cone = trimesh.creation.cone(camera_base_width, camera_cone_height, sections=4)
# Setup rotation transformation (45 degrees around z-axis)
z_rotation_matrix = np.eye(4)
z_rotation_matrix[:3, :3] = Rotation.from_euler("z", 45, degrees=True).as_matrix()
z_rotation_matrix[2, 3] = -camera_cone_height
# Setup OpenGL coordinate system conversion
opengl_coord_transform = np.eye(4)
opengl_coord_transform[1, 1] = -1 # Flip Y axis
opengl_coord_transform[2, 2] = -1 # Flip Z axis
# Combine all transformations
final_transform = camera_transform @ opengl_coord_transform @ z_rotation_matrix
# Create slight rotation for mesh variation
minor_rotation = np.eye(4)
minor_rotation[:3, :3] = Rotation.from_euler("z", 2, degrees=True).as_matrix()
# Generate multiple vertex sets for complex camera geometry
original_vertices = base_cone.vertices
scaled_vertices = 0.95 * original_vertices
rotated_vertices = apply_transformation_to_points(minor_rotation, original_vertices)
# Combine all vertex sets
all_vertices = np.concatenate([
original_vertices,
scaled_vertices,
rotated_vertices
])
# Transform vertices to final position
transformed_vertices = apply_transformation_to_points(final_transform, all_vertices)
# Generate faces for the complete camera mesh
camera_faces = generate_camera_mesh_faces(base_cone)
# Create and configure the camera mesh
camera_mesh = trimesh.Trimesh(
vertices=transformed_vertices,
faces=camera_faces
)
camera_mesh.visual.face_colors[:, :3] = camera_color
# Add the camera mesh to the scene
scene.add_geometry(camera_mesh)
def apply_transformation_to_points(
transform_matrix: np.ndarray, point_array: np.ndarray, output_dim: int = None
) -> np.ndarray:
"""
Applies a 4x4 transformation matrix to a collection of 3D points.
Args:
transform_matrix (np.ndarray): 4x4 transformation matrix to apply.
point_array (np.ndarray): Array of points to transform.
output_dim (int, optional): Target dimension for output points.
Returns:
np.ndarray: Array of transformed points.
"""
point_array = np.asarray(point_array)
original_shape = point_array.shape[:-1]
target_dim = output_dim or point_array.shape[-1]
# Transpose transformation matrix for matrix multiplication
transposed_transform = transform_matrix.swapaxes(-1, -2)
# Apply rotation/scaling and translation components
transformed_points = (
point_array @ transposed_transform[..., :-1, :] +
transposed_transform[..., -1:, :]
)
# Extract desired dimensions and restore original shape
final_result = transformed_points[..., :target_dim].reshape(*original_shape, target_dim)
return final_result
def generate_camera_mesh_faces(base_cone_mesh: trimesh.Trimesh) -> np.ndarray:
"""
Generates face indices for a complex camera mesh composed of multiple cone layers.
Args:
base_cone_mesh (trimesh.Trimesh): Base cone geometry used as template.
Returns:
np.ndarray: Array of face indices defining the camera mesh topology.
"""
face_indices = []
vertex_count_per_cone = len(base_cone_mesh.vertices)
# Process each face of the base cone
for triangle_face in base_cone_mesh.faces:
# Skip faces that include the cone tip (vertex 0)
if 0 in triangle_face:
continue
# Get vertex indices for current triangle
vertex_a, vertex_b, vertex_c = triangle_face
# Calculate corresponding vertices in second and third cone layers
vertex_a_layer2, vertex_b_layer2, vertex_c_layer2 = triangle_face + vertex_count_per_cone
vertex_a_layer3, vertex_b_layer3, vertex_c_layer3 = triangle_face + 2 * vertex_count_per_cone
# Create connecting faces between cone layers
connecting_faces = [
(vertex_a, vertex_b, vertex_b_layer2),
(vertex_a, vertex_a_layer2, vertex_c),
(vertex_c_layer2, vertex_b, vertex_c),
(vertex_a, vertex_b, vertex_b_layer3),
(vertex_a, vertex_a_layer3, vertex_c),
(vertex_c_layer3, vertex_b, vertex_c),
]
face_indices.extend(connecting_faces)
# Add reverse-winding faces for proper mesh closure
reversed_faces = [(vertex_c, vertex_b, vertex_a) for vertex_a, vertex_b, vertex_c in face_indices]
face_indices.extend(reversed_faces)
return np.array(face_indices)
|