File size: 23,943 Bytes
0ca05b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
# wzw
""" Visual utilities for HuggingFace integration.

References: https://github.com/facebookresearch/vggt
"""

import copy
import os
from typing import Tuple

import cv2
import matplotlib
import numpy as np
import requests
import trimesh

from scipy.spatial.transform import Rotation


def segment_sky(image_path, onnx_session):
    """
    Segments sky from an image using an ONNX model.
    Thanks for the great model provided by https://github.com/xiongzhu666/Sky-Segmentation-and-Post-processing

    Args:
        image_path: Path to input image
        onnx_session: ONNX runtime session with loaded model

    Returns:
        np.ndarray: Binary mask where 255 indicates non-sky regions
    """

    image = cv2.imread(image_path)
    result_map = run_skyseg(onnx_session, [320, 320], image)
    # resize the result_map to the original image size
    result_map_original = cv2.resize(result_map, (image.shape[1], image.shape[0]))

    # Fix: Invert the mask so that 255 = non-sky, 0 = sky
    # The model outputs low values for sky, high values for non-sky
    output_mask = np.zeros_like(result_map_original)
    output_mask[result_map_original < 32] = 255  # Use threshold of 32
    return output_mask


def run_skyseg(onnx_session, input_size, image):
    """
    Runs sky segmentation inference using ONNX model.

    Args:
        onnx_session: ONNX runtime session
        input_size: Target size for model input (width, height)
        image: Input image in BGR format

    Returns:
        np.ndarray: Segmentation mask
    """

    # Pre process:Resize, BGR->RGB, Transpose, PyTorch standardization, float32 cast
    temp_image = copy.deepcopy(image)
    resize_image = cv2.resize(temp_image, dsize=(input_size[0], input_size[1]))
    x = cv2.cvtColor(resize_image, cv2.COLOR_BGR2RGB)
    x = np.array(x, dtype=np.float32)
    mean = [0.485, 0.456, 0.406]
    std = [0.229, 0.224, 0.225]
    x = (x / 255 - mean) / std
    x = x.transpose(2, 0, 1)
    x = x.reshape(-1, 3, input_size[0], input_size[1]).astype("float32")

    # Inference
    input_name = onnx_session.get_inputs()[0].name
    output_name = onnx_session.get_outputs()[0].name
    onnx_result = onnx_session.run([output_name], {input_name: x})

    # Post process
    onnx_result = np.array(onnx_result).squeeze()
    min_value = np.min(onnx_result)
    max_value = np.max(onnx_result)
    onnx_result = (onnx_result - min_value) / (max_value - min_value)
    onnx_result *= 255
    onnx_result = onnx_result.astype("uint8")

    return onnx_result


def download_file_from_url(url, filename):
    """Downloads a file from a Hugging Face model repo, handling redirects."""
    try:
        # Get the redirect URL
        response = requests.get(url, allow_redirects=False)
        response.raise_for_status()  # Raise HTTPError for bad requests (4xx or 5xx)

        if response.status_code == 302:  # Expecting a redirect
            redirect_url = response.headers["Location"]
            response = requests.get(redirect_url, stream=True)
            response.raise_for_status()
        else:
            print(f"Unexpected status code: {response.status_code}")
            return

        with open(filename, "wb") as f:
            for chunk in response.iter_content(chunk_size=8192):
                f.write(chunk)
        print(f"Downloaded {filename} successfully.")

    except requests.exceptions.RequestException as e:
        print(f"Error downloading file: {e}")

        
def create_image_mesh(
    *image_data: np.ndarray,
    mask: np.ndarray = None,
    triangulate: bool = False,
    return_vertex_indices: bool = False,
) -> Tuple[np.ndarray, ...]:
    """
    Create a mesh from image data using pixel coordinates as vertices and grid connections as faces.

    Args:
        *image_data (np.ndarray): Image arrays with shape (height, width, [channels])
        mask (np.ndarray, optional): Boolean mask with shape (height, width). Defaults to None.
        triangulate (bool): Convert quad faces to triangular faces. Defaults to False.
        return_vertex_indices (bool): Include vertex indices in output. Defaults to False.

    Returns:
        faces (np.ndarray): Face connectivity array. Shape (N, 4) for quads or (N, 3) for triangles
        *vertex_data (np.ndarray): Vertex attributes corresponding to input image_data
        vertex_indices (np.ndarray, optional): Original vertex indices if return_vertex_indices=True
    """
    # Validate inputs
    assert (len(image_data) > 0) or (mask is not None), "Need at least one image or mask"
    
    if mask is None:
        height, width = image_data[0].shape[:2]
    else:
        height, width = mask.shape
    
    # Check all images have same dimensions
    for img in image_data:
        assert img.shape[:2] == (height, width), "All images must have same height and width"

    # Create quad faces connecting neighboring pixels
    base_quad = np.stack([
        np.arange(0, width - 1, dtype=np.int32),           # bottom-left
        np.arange(width, 2 * width - 1, dtype=np.int32),   # top-left  
        np.arange(1 + width, 2 * width, dtype=np.int32),   # top-right
        np.arange(1, width, dtype=np.int32),               # bottom-right
    ], axis=1)
    
    # Replicate quad pattern for all rows
    row_offsets = np.arange(0, (height - 1) * width, width, dtype=np.int32)
    faces = (row_offsets[:, None, None] + base_quad[None, :, :]).reshape((-1, 4))
    
    if mask is None:
        # No masking - use all faces and vertices
        if triangulate:
            faces = _convert_quads_to_triangles(faces)
        
        output = [faces]
        for img in image_data:
            output.append(img.reshape(-1, *img.shape[2:]))
        
        if return_vertex_indices:
            output.append(np.arange(height * width, dtype=np.int32))
        
        return tuple(output)
    else:
        # Apply mask - only keep faces where all 4 corners are valid
        valid_quads = (
            mask[:-1, :-1] & mask[1:, :-1] & 
            mask[1:, 1:] & mask[:-1, 1:]
        ).ravel()
        faces = faces[valid_quads]
        
        if triangulate:
            faces = _convert_quads_to_triangles(faces)
        
        # Remove unused vertices and remap face indices
        num_face_vertices = faces.shape[-1]
        unique_vertices, remapped_indices = np.unique(faces, return_inverse=True)
        faces = remapped_indices.astype(np.int32).reshape(-1, num_face_vertices)
        
        output = [faces]
        for img in image_data:
            flattened_img = img.reshape(-1, *img.shape[2:])
            output.append(flattened_img[unique_vertices])
        
        if return_vertex_indices:
            output.append(unique_vertices)
        
        return tuple(output)


def _convert_quads_to_triangles(quad_faces: np.ndarray) -> np.ndarray:
    """Convert quadrilateral faces to triangular faces."""
    if quad_faces.shape[-1] == 3:
        return quad_faces  # Already triangular
    
    num_vertices_per_face = quad_faces.shape[-1]
    triangle_indices = np.stack([
        np.zeros(num_vertices_per_face - 2, dtype=int),                   # First vertex
        np.arange(1, num_vertices_per_face - 1, dtype=int),               # Sequential vertices
        np.arange(2, num_vertices_per_face, dtype=int),                   # Next sequential vertices
    ], axis=1)
    
    return quad_faces[:, triangle_indices].reshape((-1, 3))


def convert_predictions_to_glb_scene(
    predictions,
    filter_by_frames="all",
    show_camera=True,
    mask_sky_bg=False,
    mask_ambiguous=False,
    as_mesh=True,
) -> trimesh.Scene:
    """
    Converts model predictions to a 3D scene represented as a GLB file.

    Args:
        predictions (dict): Dictionary containing model predictions with keys:
            - world_points: 3D point coordinates (S, H, W, 3)
            - images: Input images (S, H, W, 3)
            - camera_poses: Camera extrinsic matrices (S, 3, 4)
        filter_by_frames (str): Frame filter specification (default: "all")
        show_camera (bool): Include camera visualization (default: True)
        mask_sky_bg (bool): Mask out sky background pixels (default: False)
        mask_ambiguous (bool): Apply final mask to filter ambiguous predictions (default: False)
        as_mesh (bool): Represent the data as a mesh instead of point cloud (default: False)

    Returns:
        trimesh.Scene: Processed 3D scene containing point cloud/mesh and cameras

    Raises:
        ValueError: If input predictions structure is invalid
    """
    if not isinstance(predictions, dict):
        raise ValueError("predictions must be a dictionary")

    print("Building GLB scene")
    
    # Parse frame selection from filter string
    target_frame_index = None
    if filter_by_frames not in ["all", "All"]:
        try:
            # Extract numeric index before colon separator
            target_frame_index = int(filter_by_frames.split(":")[0])
        except (ValueError, IndexError):
            pass

    # Validate required data in predictions
    print("Using Pointmap Branch")
    if "world_points" not in predictions:
        raise ValueError(
            "world_points not found in predictions. Pointmap Branch requires 'world_points' key. "
            "Depthmap and Camera branches have been removed."
        )

    # Extract prediction data
    point_cloud_3d = predictions["world_points"]
    input_images = predictions["images"]
    extrinsic_matrices = predictions["camera_poses"]
    ambiguity_mask = predictions["final_mask"]
    sky_region_mask = predictions["sky_mask"]
    
    # Filter to single frame if specified
    if target_frame_index is not None:
        point_cloud_3d = point_cloud_3d[target_frame_index][None]
        input_images = input_images[target_frame_index][None]
        extrinsic_matrices = extrinsic_matrices[target_frame_index][None]
        ambiguity_mask = ambiguity_mask[target_frame_index][None]
        sky_region_mask = sky_region_mask[target_frame_index][None]

    # Flatten 3D points to vertex array
    flattened_vertices = point_cloud_3d.reshape(-1, 3)
    
    # Convert images to RGB color array
    if input_images.ndim == 4 and input_images.shape[1] == 3:  # NCHW format
        rgb_colors = np.transpose(input_images, (0, 2, 3, 1))
    else:  # Already in NHWC format
        rgb_colors = input_images
    rgb_colors = (rgb_colors.reshape(-1, 3) * 255).astype(np.uint8)

    # Build composite filtering mask
    valid_points_mask = np.ones(len(flattened_vertices), dtype=bool)

    # Apply ambiguity filtering if requested
    if mask_ambiguous:
        flat_ambiguity_mask = ambiguity_mask.reshape(-1)
        valid_points_mask = valid_points_mask & flat_ambiguity_mask
    
    # Apply sky region filtering if requested
    if mask_sky_bg:
        flat_sky_mask = sky_region_mask.reshape(-1)
        valid_points_mask = valid_points_mask & flat_sky_mask

    # Apply mask to filter vertices and colors
    filtered_vertices = flattened_vertices[valid_points_mask].copy()
    filtered_colors = rgb_colors[valid_points_mask].copy()

    # Handle empty geometry case
    if filtered_vertices is None or np.asarray(filtered_vertices).size == 0:
        filtered_vertices = np.array([[1, 0, 0]])
        filtered_colors = np.array([[255, 255, 255]])
        scene_scale_factor = 1
    else:
        # Compute scene scale from percentile-based bounding box
        percentile_lower = np.percentile(filtered_vertices, 5, axis=0)
        percentile_upper = np.percentile(filtered_vertices, 95, axis=0)
        scene_scale_factor = np.linalg.norm(percentile_upper - percentile_lower)

    # Initialize color mapping for cameras
    color_palette = matplotlib.colormaps.get_cmap("gist_rainbow")

    # Create empty 3D scene container
    output_scene = trimesh.Scene()

    # Add geometry to scene based on representation type
    if as_mesh:
        # Mesh representation
        if target_frame_index is not None:
            # Single frame mesh generation
            frame_height, frame_width = point_cloud_3d.shape[1:3]

            # Prepare unfiltered data for mesh construction
            structured_points = point_cloud_3d.reshape(frame_height, frame_width, 3)

            # Convert image data to proper format
            if input_images.ndim == 4 and input_images.shape[1] == 3:  # NCHW format
                structured_colors = np.transpose(input_images[0], (1, 2, 0))
            else:  # Already in HWC format
                structured_colors = input_images[0]
            structured_colors *= 255
            
            # Get structured mask for mesh creation
            structured_mask = predictions["final_mask"][target_frame_index].reshape(
                frame_height, frame_width
            )

            # Build filtering mask
            mesh_filter_mask = structured_mask

            # Check for normal data availability
            mesh_normals = None
            if "normal" in predictions and predictions["normal"] is not None:
                # Extract normals for selected frame
                frame_normal_data = (
                    predictions["normal"][target_frame_index]
                    if target_frame_index is not None
                    else predictions["normal"][0]
                )

                # Generate mesh with normal information
                mesh_faces, mesh_vertices, mesh_colors, mesh_normals = create_image_mesh(
                    structured_points * np.array([1, -1, 1], dtype=np.float32),
                    structured_colors / 255.0,
                    frame_normal_data * np.array([1, -1, 1], dtype=np.float32),
                    mask=mesh_filter_mask,
                    triangulate=True,
                    return_vertex_indices=False,
                )

                # Apply coordinate system transformation to normals
                mesh_normals = mesh_normals * np.array([1, -1, 1], dtype=np.float32)
            else:
                # Generate mesh without normal information
                mesh_faces, mesh_vertices, mesh_colors = create_image_mesh(
                    structured_points * np.array([1, -1, 1], dtype=np.float32),
                    structured_colors / 255.0,
                    mask=mesh_filter_mask,
                    triangulate=True,
                    return_vertex_indices=False,
                )

            # Construct trimesh object with optional normals
            geometry_mesh = trimesh.Trimesh(
                vertices=mesh_vertices * np.array([1, -1, 1], dtype=np.float32),
                faces=mesh_faces,
                vertex_colors=(mesh_colors * 255).astype(np.uint8),
                vertex_normals=(mesh_normals if mesh_normals is not None else None),
                process=False,
            )
            output_scene.add_geometry(geometry_mesh)
        else:
            # Multi-frame mesh generation
            print("Creating mesh for multi-frame data...")

            for frame_idx in range(point_cloud_3d.shape[0]):
                frame_height, frame_width = point_cloud_3d.shape[1:3]

                # Extract per-frame data
                frame_point_data = point_cloud_3d[frame_idx]
                frame_ambiguity_mask = predictions["final_mask"][frame_idx]
                frame_sky_mask = predictions["sky_mask"][frame_idx]

                # Extract frame image data
                if input_images.ndim == 4 and input_images.shape[1] == 3:  # NCHW format
                    frame_image_data = np.transpose(input_images[frame_idx], (1, 2, 0))
                else:  # Already in HWC format
                    frame_image_data = input_images[frame_idx]
                frame_image_data *= 255
                
                # Build per-frame filtering mask
                frame_filter_mask = np.ones((frame_height, frame_width), dtype=bool)
                
                # Apply ambiguity filtering if enabled
                if mask_ambiguous:
                    frame_filter_mask = frame_filter_mask & frame_ambiguity_mask

                # Apply sky filtering if enabled
                if mask_sky_bg:
                    frame_filter_mask = frame_filter_mask & frame_sky_mask

                # Generate mesh for current frame
                frame_faces, frame_vertices, frame_colors = create_image_mesh(
                    frame_point_data * np.array([1, -1, 1], dtype=np.float32),
                    frame_image_data / 255.0,
                    mask=frame_filter_mask,
                    triangulate=True,
                    return_vertex_indices=False,
                )

                frame_vertices = frame_vertices * np.array([1, -1, 1], dtype=np.float32)
                
                # Create trimesh object for current frame
                frame_geometry = trimesh.Trimesh(
                    vertices=frame_vertices,
                    faces=frame_faces,
                    vertex_colors=(frame_colors * 255).astype(np.uint8),
                    process=False,
                )
                output_scene.add_geometry(frame_geometry)
    else:
        # Point cloud representation
        point_cloud_geometry = trimesh.PointCloud(vertices=filtered_vertices, colors=filtered_colors)
        output_scene.add_geometry(point_cloud_geometry)

    # Add camera visualizations if requested
    num_camera_views = len(extrinsic_matrices)

    if show_camera:
        # Iterate through all camera views
        for camera_idx in range(num_camera_views):
            camera_extrinsic = extrinsic_matrices[camera_idx]
            camera_color_rgba = color_palette(camera_idx / num_camera_views)
            camera_color_rgb = tuple(int(255 * x) for x in camera_color_rgba[:3])

            integrate_camera_into_scene(
                output_scene, camera_extrinsic, camera_color_rgb, scene_scale_factor
            )
    
    # Define coordinate system transformation matrices
    opengl_transform = np.eye(4)
    opengl_transform[1, 1] = -1  # Flip Y axis
    opengl_transform[2, 2] = -1  # Flip Z axis

    # Define alignment rotation (180 degrees around Y-axis)
    alignment_rotation = np.eye(4)
    alignment_rotation[:3, :3] = Rotation.from_euler("y", 0, degrees=True).as_matrix()

    # Compute and apply final transformation
    scene_transformation = (
        np.linalg.inv(extrinsic_matrices[0])
        @ opengl_transform
        @ alignment_rotation
    )
    output_scene.apply_transform(scene_transformation)
    
    print("GLB Scene built")
    return output_scene

def integrate_camera_into_scene(
    scene: trimesh.Scene,
    camera_transform: np.ndarray,
    camera_color: tuple,
    scale_factor: float,
):
    """
    Adds a camera visualization mesh to the 3D scene.

    Args:
        scene (trimesh.Scene): The 3D scene to add the camera visualization.
        camera_transform (np.ndarray): 4x4 transformation matrix for camera positioning.
        camera_color (tuple): RGB color tuple for the camera mesh.
        scale_factor (float): Scaling factor for the camera size relative to scene.
    """
    # Define camera dimensions based on scene scale
    camera_base_width = scale_factor * 0.05
    camera_cone_height = scale_factor * 0.1

    # Create base cone geometry for camera representation
    base_cone = trimesh.creation.cone(camera_base_width, camera_cone_height, sections=4)
    
    # Setup rotation transformation (45 degrees around z-axis)
    z_rotation_matrix = np.eye(4)
    z_rotation_matrix[:3, :3] = Rotation.from_euler("z", 45, degrees=True).as_matrix()
    z_rotation_matrix[2, 3] = -camera_cone_height

    # Setup OpenGL coordinate system conversion
    opengl_coord_transform = np.eye(4)
    opengl_coord_transform[1, 1] = -1  # Flip Y axis
    opengl_coord_transform[2, 2] = -1  # Flip Z axis
    
    # Combine all transformations
    final_transform = camera_transform @ opengl_coord_transform @ z_rotation_matrix

    # Create slight rotation for mesh variation
    minor_rotation = np.eye(4)
    minor_rotation[:3, :3] = Rotation.from_euler("z", 2, degrees=True).as_matrix()

    # Generate multiple vertex sets for complex camera geometry
    original_vertices = base_cone.vertices
    scaled_vertices = 0.95 * original_vertices
    rotated_vertices = apply_transformation_to_points(minor_rotation, original_vertices)
    
    # Combine all vertex sets
    all_vertices = np.concatenate([
        original_vertices,
        scaled_vertices, 
        rotated_vertices
    ])
    
    # Transform vertices to final position
    transformed_vertices = apply_transformation_to_points(final_transform, all_vertices)

    # Generate faces for the complete camera mesh
    camera_faces = generate_camera_mesh_faces(base_cone)

    # Create and configure the camera mesh
    camera_mesh = trimesh.Trimesh(
        vertices=transformed_vertices, 
        faces=camera_faces
    )
    camera_mesh.visual.face_colors[:, :3] = camera_color
    
    # Add the camera mesh to the scene
    scene.add_geometry(camera_mesh)


def apply_transformation_to_points(
    transform_matrix: np.ndarray, point_array: np.ndarray, output_dim: int = None
) -> np.ndarray:
    """
    Applies a 4x4 transformation matrix to a collection of 3D points.

    Args:
        transform_matrix (np.ndarray): 4x4 transformation matrix to apply.
        point_array (np.ndarray): Array of points to transform.
        output_dim (int, optional): Target dimension for output points.

    Returns:
        np.ndarray: Array of transformed points.
    """
    point_array = np.asarray(point_array)
    original_shape = point_array.shape[:-1]
    target_dim = output_dim or point_array.shape[-1]

    # Transpose transformation matrix for matrix multiplication
    transposed_transform = transform_matrix.swapaxes(-1, -2)
    
    # Apply rotation/scaling and translation components
    transformed_points = (
        point_array @ transposed_transform[..., :-1, :] + 
        transposed_transform[..., -1:, :]
    )

    # Extract desired dimensions and restore original shape
    final_result = transformed_points[..., :target_dim].reshape(*original_shape, target_dim)
    return final_result


def generate_camera_mesh_faces(base_cone_mesh: trimesh.Trimesh) -> np.ndarray:
    """
    Generates face indices for a complex camera mesh composed of multiple cone layers.

    Args:
        base_cone_mesh (trimesh.Trimesh): Base cone geometry used as template.

    Returns:
        np.ndarray: Array of face indices defining the camera mesh topology.
    """
    face_indices = []
    vertex_count_per_cone = len(base_cone_mesh.vertices)

    # Process each face of the base cone
    for triangle_face in base_cone_mesh.faces:
        # Skip faces that include the cone tip (vertex 0)
        if 0 in triangle_face:
            continue
            
        # Get vertex indices for current triangle
        vertex_a, vertex_b, vertex_c = triangle_face
        
        # Calculate corresponding vertices in second and third cone layers
        vertex_a_layer2, vertex_b_layer2, vertex_c_layer2 = triangle_face + vertex_count_per_cone
        vertex_a_layer3, vertex_b_layer3, vertex_c_layer3 = triangle_face + 2 * vertex_count_per_cone

        # Create connecting faces between cone layers
        connecting_faces = [
            (vertex_a, vertex_b, vertex_b_layer2),
            (vertex_a, vertex_a_layer2, vertex_c),
            (vertex_c_layer2, vertex_b, vertex_c),
            (vertex_a, vertex_b, vertex_b_layer3),
            (vertex_a, vertex_a_layer3, vertex_c),
            (vertex_c_layer3, vertex_b, vertex_c),
        ]
        
        face_indices.extend(connecting_faces)

    # Add reverse-winding faces for proper mesh closure
    reversed_faces = [(vertex_c, vertex_b, vertex_a) for vertex_a, vertex_b, vertex_c in face_indices]
    face_indices.extend(reversed_faces)
    
    return np.array(face_indices)