Spaces:
Running
on
L40S
Running
on
L40S
| """ | |
| All the functions to build the relevant models and modules | |
| from the Hydra config. | |
| """ | |
| import typing as tp | |
| import omegaconf | |
| import torch | |
| from codeclm.utils.utils import dict_from_config | |
| from codeclm.modules.pattern import ( | |
| CodebooksPatternProvider, | |
| DelayedPatternProvider, | |
| ) | |
| from codeclm.modules.conditioners import ( | |
| BaseConditioner, | |
| QwTokenizerConditioner, | |
| QwTextConditioner, | |
| QuantizedEmbeddingConditioner, | |
| ConditionerProvider, | |
| ConditionFuser, | |
| ) | |
| def get_audio_tokenizer_model(checkpoint_path: str, cfg: omegaconf.DictConfig): | |
| from codeclm.tokenizer.audio_tokenizer import AudioTokenizer | |
| """Instantiate a compression model.""" | |
| if checkpoint_path is None: | |
| return None | |
| if checkpoint_path.startswith('//pretrained/'): | |
| name = checkpoint_path.split('/', 3)[-1] | |
| return AudioTokenizer.get_pretrained(name, cfg.vae_config, cfg.vae_model, 'cpu', mode=cfg.mode) | |
| elif checkpoint_path == "": | |
| return None | |
| else: | |
| name = checkpoint_path | |
| return AudioTokenizer.get_pretrained(name, cfg.vae_config, cfg.vae_model, 'cpu', mode=cfg.mode) | |
| def get_lm_model(cfg: omegaconf.DictConfig): #-> LMModel: | |
| """Instantiate a LM.""" | |
| lm_kwargs = dict_from_config(getattr(cfg, 'lm')) | |
| # n_q: number of RVQ | |
| code_depth = lm_kwargs['code_depth'] | |
| q_modeling = lm_kwargs.pop('q_modeling', None) | |
| # conditioner | |
| condition_provider = get_conditioner_provider(lm_kwargs["dim"], cfg) | |
| # codebook pattern: delay | |
| codebooks_pattern_cfg = getattr(cfg, 'codebooks_pattern') | |
| if codebooks_pattern_cfg.modeling is None: | |
| assert q_modeling is not None, \ | |
| "LM model should either have a codebook pattern defined or transformer_lm.q_modeling" | |
| codebooks_pattern_cfg = omegaconf.OmegaConf.create( | |
| {'modeling': q_modeling, 'delay': {'delays': list(range(code_depth))}} | |
| ) | |
| pattern_provider = get_codebooks_pattern_provider(code_depth, codebooks_pattern_cfg) | |
| # condition dropout | |
| attribute_dropout = dict_from_config(getattr(cfg, 'attribute_dropout')) | |
| cls_free_guidance = dict_from_config(getattr(cfg, 'classifier_free_guidance')) | |
| cfg_prob, cfg_coef = cls_free_guidance['training_dropout'], cls_free_guidance['inference_coef'] | |
| # condition fuser | |
| fuser = get_condition_fuser(cfg) | |
| lm_type = lm_kwargs['lm_type'] # YCY: For consistency, choose different lm.py based on lm_type | |
| if lm_type == 'Llama': | |
| from .lm_levo import LmModel | |
| return LmModel( | |
| pattern_provider=pattern_provider, | |
| condition_provider=condition_provider, | |
| fuser=fuser, | |
| cfg_dropout=cfg_prob, | |
| cfg_coef=cfg_coef, | |
| attribute_dropout=attribute_dropout, | |
| cfg=cfg, | |
| **lm_kwargs | |
| ).to('cpu') | |
| else: | |
| raise KeyError(f"Unexpected LM model {lm_type}") | |
| def get_conditioner_provider(output_dim: int, cfg: omegaconf.DictConfig) -> ConditionerProvider: | |
| """Instantiate a conditioning model.""" | |
| cfg = getattr(cfg, 'conditioners') | |
| dict_cfg = {} if cfg is None else dict_from_config(cfg) | |
| conditioners: tp.Dict[str, BaseConditioner] = {} | |
| condition_provider_args = dict_cfg.pop('args', {}) | |
| for cond, cond_cfg in dict_cfg.items(): | |
| model_type = cond_cfg['model'] | |
| model_args = cond_cfg[model_type] | |
| if model_type == 'QwTokenizer': | |
| conditioners[str(cond)] = QwTokenizerConditioner( | |
| output_dim=output_dim, | |
| **model_args | |
| ) | |
| elif model_type == "QwTextTokenizer": | |
| conditioners[str(cond)] = QwTextConditioner( | |
| output_dim=output_dim, | |
| **model_args | |
| ) | |
| elif model_type == "qt_embedding": | |
| conditioners[str(cond)] = QuantizedEmbeddingConditioner( | |
| dim=output_dim, | |
| **model_args | |
| ) | |
| else: | |
| raise ValueError(f"Unrecognized conditioning model: {model_type}") | |
| conditioner = ConditionerProvider(conditioners, **condition_provider_args) | |
| return conditioner | |
| def get_condition_fuser(cfg: omegaconf.DictConfig) -> ConditionFuser: | |
| """Instantiate a condition fuser object.""" | |
| fuser_cfg = getattr(cfg, 'fuser') | |
| fuser_methods = ['sum', 'prepend'] | |
| fuse2cond = {k: fuser_cfg[k] for k in fuser_methods} | |
| kwargs = {k: v for k, v in fuser_cfg.items() if k not in fuser_methods} | |
| fuser = ConditionFuser(fuse2cond=fuse2cond, **kwargs) | |
| return fuser | |
| def get_codebooks_pattern_provider(code_depth: int, cfg: omegaconf.DictConfig) -> CodebooksPatternProvider: | |
| """Instantiate a codebooks pattern provider object.""" | |
| pattern_providers = { | |
| 'delay': DelayedPatternProvider, | |
| } | |
| name = cfg.modeling | |
| kwargs = dict_from_config(cfg.get(name)) if hasattr(cfg, name) else {} | |
| klass = pattern_providers[name] | |
| return klass(code_depth, **kwargs) | |