Spaces:
Running
on
L40S
Running
on
L40S
| # Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import argparse | |
| import gc | |
| import json | |
| import os | |
| import shutil | |
| import warnings | |
| import torch | |
| from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer | |
| try: | |
| from transformers import LlamaTokenizerFast | |
| except ImportError as e: | |
| warnings.warn(e) | |
| warnings.warn( | |
| "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion" | |
| ) | |
| LlamaTokenizerFast = None | |
| """ | |
| Sample usage: | |
| ``` | |
| python src/transformers/models/llama/convert_llama_weights_to_hf.py \ | |
| --input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path | |
| ``` | |
| Thereafter, models can be loaded via: | |
| ```py | |
| from transformers import LlamaForCausalLM, LlamaTokenizer | |
| model = LlamaForCausalLM.from_pretrained("/output/path") | |
| tokenizer = LlamaTokenizer.from_pretrained("/output/path") | |
| ``` | |
| Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions | |
| come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM). | |
| """ | |
| NUM_SHARDS = { | |
| "7B": 1, | |
| "7Bf": 1, | |
| "13B": 2, | |
| "13Bf": 2, | |
| "34B": 4, | |
| "30B": 4, | |
| "65B": 8, | |
| "70B": 8, | |
| "70Bf": 8, | |
| } | |
| def compute_intermediate_size(n, ffn_dim_multiplier=1, multiple_of=256): | |
| return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3)) + multiple_of - 1) // multiple_of) | |
| def read_json(path): | |
| with open(path, "r") as f: | |
| return json.load(f) | |
| def write_json(text, path): | |
| with open(path, "w") as f: | |
| json.dump(text, f) | |
| def write_model(model_path, input_base_path, model_size, tokenizer_path=None, safe_serialization=True): | |
| # for backward compatibility, before you needed the repo to be called `my_repo/model_size` | |
| if not os.path.isfile(os.path.join(input_base_path, "params.json")): | |
| input_base_path = os.path.join(input_base_path, model_size) | |
| os.makedirs(model_path, exist_ok=True) | |
| tmp_model_path = os.path.join(model_path, "tmp") | |
| os.makedirs(tmp_model_path, exist_ok=True) | |
| params = read_json(os.path.join(input_base_path, "params.json")) | |
| num_shards = NUM_SHARDS[model_size] | |
| n_layers = params["n_layers"] | |
| n_heads = params["n_heads"] | |
| n_heads_per_shard = n_heads // num_shards | |
| dim = params["dim"] | |
| dims_per_head = dim // n_heads | |
| base = params.get("rope_theta", 10000.0) | |
| inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head)) | |
| if base > 10000.0: | |
| max_position_embeddings = 16384 | |
| else: | |
| max_position_embeddings = 2048 | |
| tokenizer_class = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast | |
| if tokenizer_path is not None: | |
| tokenizer = tokenizer_class(tokenizer_path) | |
| tokenizer.save_pretrained(model_path) | |
| vocab_size = tokenizer.vocab_size if tokenizer_path is not None else 32000 | |
| if "n_kv_heads" in params: | |
| num_key_value_heads = params["n_kv_heads"] # for GQA / MQA | |
| num_local_key_value_heads = n_heads_per_shard // num_key_value_heads | |
| key_value_dim = dim // num_key_value_heads | |
| else: # compatibility with other checkpoints | |
| num_key_value_heads = n_heads | |
| num_local_key_value_heads = n_heads_per_shard | |
| key_value_dim = dim | |
| # permute for sliced rotary | |
| def permute(w, n_heads=n_heads, dim1=dim, dim2=dim): | |
| return w.view(n_heads, dim1 // n_heads // 2, 2, dim2).transpose(1, 2).reshape(dim1, dim2) | |
| print(f"Fetching all parameters from the checkpoint at {input_base_path}.") | |
| # Load weights | |
| if model_size == "7B": | |
| # Not sharded | |
| # (The sharded implementation would also work, but this is simpler.) | |
| loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu") | |
| else: | |
| # Sharded | |
| loaded = [ | |
| torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pth"), map_location="cpu") | |
| for i in range(num_shards) | |
| ] | |
| param_count = 0 | |
| index_dict = {"weight_map": {}} | |
| for layer_i in range(n_layers): | |
| filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin" | |
| if model_size == "7B": | |
| # Unsharded | |
| state_dict = { | |
| f"model.layers.{layer_i}.self_attn.q_proj.weight": permute( | |
| loaded[f"layers.{layer_i}.attention.wq.weight"] | |
| ), | |
| f"model.layers.{layer_i}.self_attn.k_proj.weight": permute( | |
| loaded[f"layers.{layer_i}.attention.wk.weight"] | |
| ), | |
| f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"], | |
| f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"], | |
| f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"], | |
| f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"], | |
| f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"], | |
| f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"], | |
| f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"], | |
| } | |
| else: | |
| # Sharded | |
| # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share | |
| # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is | |
| # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. | |
| state_dict = { | |
| f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][ | |
| f"layers.{layer_i}.attention_norm.weight" | |
| ].clone(), | |
| f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][ | |
| f"layers.{layer_i}.ffn_norm.weight" | |
| ].clone(), | |
| } | |
| state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute( | |
| torch.cat( | |
| [ | |
| loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim) | |
| for i in range(num_shards) | |
| ], | |
| dim=0, | |
| ).reshape(dim, dim) | |
| ) | |
| state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute( | |
| torch.cat( | |
| [ | |
| loaded[i][f"layers.{layer_i}.attention.wk.weight"].view( | |
| num_local_key_value_heads, dims_per_head, dim | |
| ) | |
| for i in range(num_shards) | |
| ], | |
| dim=0, | |
| ).reshape(key_value_dim, dim), | |
| num_key_value_heads, | |
| key_value_dim, | |
| dim, | |
| ) | |
| state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat( | |
| [ | |
| loaded[i][f"layers.{layer_i}.attention.wv.weight"].view( | |
| num_local_key_value_heads, dims_per_head, dim | |
| ) | |
| for i in range(num_shards) | |
| ], | |
| dim=0, | |
| ).reshape(key_value_dim, dim) | |
| state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat( | |
| [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1 | |
| ) | |
| state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat( | |
| [loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(num_shards)], dim=0 | |
| ) | |
| state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat( | |
| [loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(num_shards)], dim=1 | |
| ) | |
| state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat( | |
| [loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(num_shards)], dim=0 | |
| ) | |
| state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq | |
| for k, v in state_dict.items(): | |
| index_dict["weight_map"][k] = filename | |
| param_count += v.numel() | |
| torch.save(state_dict, os.path.join(tmp_model_path, filename)) | |
| filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin" | |
| if model_size == "7B": | |
| # Unsharded | |
| state_dict = { | |
| "model.embed_tokens.weight": loaded["tok_embeddings.weight"], | |
| "model.norm.weight": loaded["norm.weight"], | |
| "lm_head.weight": loaded["output.weight"], | |
| } | |
| else: | |
| state_dict = { | |
| "model.norm.weight": loaded[0]["norm.weight"], | |
| "model.embed_tokens.weight": torch.cat( | |
| [loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=1 | |
| ), | |
| "lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0), | |
| } | |
| for k, v in state_dict.items(): | |
| index_dict["weight_map"][k] = filename | |
| param_count += v.numel() | |
| torch.save(state_dict, os.path.join(tmp_model_path, filename)) | |
| # Write configs | |
| index_dict["metadata"] = {"total_size": param_count * 2} | |
| write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json")) | |
| ffn_dim_multiplier = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1 | |
| multiple_of = params["multiple_of"] if "multiple_of" in params else 256 | |
| config = LlamaConfig( | |
| hidden_size=dim, | |
| intermediate_size=compute_intermediate_size(dim, ffn_dim_multiplier, multiple_of), | |
| num_attention_heads=params["n_heads"], | |
| num_hidden_layers=params["n_layers"], | |
| rms_norm_eps=params["norm_eps"], | |
| num_key_value_heads=num_key_value_heads, | |
| vocab_size=vocab_size, | |
| rope_theta=base, | |
| max_position_embeddings=max_position_embeddings, | |
| ) | |
| config.save_pretrained(tmp_model_path) | |
| # Make space so we can load the model properly now. | |
| del state_dict | |
| del loaded | |
| gc.collect() | |
| print("Loading the checkpoint in a Llama model.") | |
| model = LlamaForCausalLM.from_pretrained(tmp_model_path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True) | |
| # Avoid saving this as part of the config. | |
| del model.config._name_or_path | |
| model.config.torch_dtype = torch.float16 | |
| print("Saving in the Transformers format.") | |
| model.save_pretrained(model_path, safe_serialization=safe_serialization) | |
| shutil.rmtree(tmp_model_path) | |
| def write_tokenizer(tokenizer_path, input_tokenizer_path): | |
| # Initialize the tokenizer based on the `spm` model | |
| tokenizer_class = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast | |
| print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.") | |
| tokenizer = tokenizer_class(input_tokenizer_path) | |
| tokenizer.save_pretrained(tokenizer_path) | |
| def main(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "--input_dir", | |
| help="Location of LLaMA weights, which contains tokenizer.model and model folders", | |
| ) | |
| parser.add_argument( | |
| "--model_size", | |
| choices=["7B", "7Bf", "13B", "13Bf", "30B", "34B", "65B", "70B", "70Bf", "tokenizer_only"], | |
| help="'f' models correspond to the finetuned versions, and are specific to the Llama2 official release. For more details on Llama2, checkout the original repo: https://huggingface.co/meta-llama", | |
| ) | |
| parser.add_argument( | |
| "--output_dir", | |
| help="Location to write HF model and tokenizer", | |
| ) | |
| parser.add_argument("--safe_serialization", type=bool, help="Whether or not to save using `safetensors`.") | |
| args = parser.parse_args() | |
| spm_path = os.path.join(args.input_dir, "tokenizer.model") | |
| if args.model_size != "tokenizer_only": | |
| write_model( | |
| model_path=args.output_dir, | |
| input_base_path=args.input_dir, | |
| model_size=args.model_size, | |
| safe_serialization=args.safe_serialization, | |
| tokenizer_path=spm_path, | |
| ) | |
| else: | |
| write_tokenizer(args.output_dir, spm_path) | |
| if __name__ == "__main__": | |
| main() | |