Spaces:
Running
on
L40S
Running
on
L40S
| """ | |
| Main model for using CodecLM. This will combine all the required components | |
| and provide easy access to the generation API. | |
| """ | |
| import typing as tp | |
| import warnings | |
| import sys | |
| import time | |
| import torch | |
| import torch.nn as nn | |
| from torch.nn import functional as F | |
| import torchaudio | |
| import numpy as np | |
| import lightning as pl | |
| from torchmetrics.classification import MulticlassAccuracy | |
| import pdb | |
| from codeclm.models import builders | |
| import math | |
| from torch.optim import Optimizer | |
| from torch.optim.lr_scheduler import _LRScheduler | |
| from peft import LoraConfig, get_peft_model | |
| from datetime import datetime | |
| import os | |
| os.environ['TOKENIZERS_PARALLELISM'] = "false" | |
| class CodecLM_PL(pl.LightningModule): | |
| def __init__(self, cfg, ckpt_path): | |
| super().__init__() | |
| self.cfg = cfg | |
| # 1) Build audio tokenizer (usually None during training) | |
| self.audio_tokenizer = builders.get_audio_tokenizer_model(self.cfg.audio_tokenizer_checkpoint, self.cfg) | |
| if self.audio_tokenizer is not None: | |
| for param in self.audio_tokenizer.parameters(): | |
| param.requires_grad = False | |
| if "audio_tokenizer_checkpoint_sep" in self.cfg.keys(): | |
| self.seperate_tokenizer = builders.get_audio_tokenizer_model(self.cfg.audio_tokenizer_checkpoint_sep, self.cfg) | |
| for param in self.seperate_tokenizer.parameters(): | |
| param.requires_grad = False | |
| else: | |
| self.seperate_tokenizer = None | |
| # 2) Build LM | |
| self.audiolm = builders.get_lm_model(self.cfg) | |
| print(self.audiolm) | |
| # 3) Load pretrained checkpoint (if any) | |
| checkpoint = torch.load(ckpt_path, map_location='cpu') | |
| missing, unexpected = self.load_state_dict(checkpoint, strict=False) | |
| print("successfully load pretrained model {}".format(ckpt_path)) | |
| # 4) Build metrics | |
| self.val_steps = [] | |
| self.train_slide_acc = [] | |
| self.train_steps = [] | |
| self.top1_acc_metric = nn.ModuleList([MulticlassAccuracy( | |
| self.audiolm.code_size, | |
| top_k=1, | |
| average="micro", multidim_average="global", | |
| ignore_index=self.cfg.lm.code_size, # ignore EOS token prediction | |
| ) for _ in range(self.audiolm.code_depth)]) | |
| self.top10_acc_metric = nn.ModuleList([MulticlassAccuracy( | |
| self.audiolm.code_size, | |
| top_k=10, | |
| average="micro", multidim_average="global", | |
| ignore_index=self.cfg.lm.code_size, | |
| ) for _ in range(self.audiolm.code_depth)]) | |
| self.epoch = 0 | |
| # TODO: move this part to loader | |
| def generate_mask_and_end_token(self, x, sequence_lengths, end_id=16384): | |
| batch_size = sequence_lengths.size(0) | |
| max_length = x.size(2) | |
| # pad one frame, if the maximum sequence length is equal to the input length | |
| if max_length == sequence_lengths.max(): | |
| x = F.pad(x, (0, 1), value=end_id) | |
| max_length = x.size(2) | |
| if max_length <= sequence_lengths.max() + 1: | |
| sequence_lengths = sequence_lengths - (sequence_lengths.max()+1 - max_length) | |
| # Add end token to x according to the sequence length | |
| x[torch.arange(batch_size), :, sequence_lengths] = end_id | |
| sequence_lengths += 1 | |
| mask = torch.arange(max_length).expand(batch_size, max_length) < sequence_lengths.unsqueeze(1) | |
| mask = mask.to(x.device) | |
| mask_3d = mask.unsqueeze(1).expand(batch_size, x.size(1), max_length) | |
| x = torch.where(mask_3d, x, end_id+1) | |
| return x, mask_3d | |
| def get_time(self): | |
| # 获取当前的日期和时间 | |
| now = datetime.now() | |
| # 使用strftime函数格式化日期和时间 | |
| formatted_now = now.strftime("%Y-%m-%d %H:%M:%S.%f") | |
| return formatted_now | |
| class CosineLRScheduler(_LRScheduler):# | |
| """Cosine LR scheduler. | |
| Args: | |
| optimizer (Optimizer): Torch optimizer. | |
| warmup_steps (int): Number of warmup steps. | |
| total_steps (int): Total number of steps. | |
| lr_min_ratio (float): Minimum learning rate. | |
| cycle_length (float): Cycle length. | |
| """ | |
| def __init__(self, optimizer: Optimizer, total_steps: int, warmup_steps: int, | |
| lr_min_ratio: float = 0.0, cycle_length: float = 1.0): | |
| self.warmup_steps = warmup_steps | |
| assert self.warmup_steps >= 0 | |
| self.total_steps = total_steps | |
| assert self.total_steps >= 0 | |
| self.lr_min_ratio = lr_min_ratio | |
| self.cycle_length = cycle_length | |
| super().__init__(optimizer) | |
| def _get_sched_lr(self, lr: float, step: int): | |
| if step < self.warmup_steps: | |
| lr_ratio = step / self.warmup_steps | |
| lr = lr_ratio * lr | |
| elif step <= self.total_steps: | |
| s = (step - self.warmup_steps) / (self.total_steps - self.warmup_steps) | |
| lr_ratio = self.lr_min_ratio + 0.5 * (1 - self.lr_min_ratio) * \ | |
| (1. + math.cos(math.pi * s / self.cycle_length)) | |
| lr = lr_ratio * lr | |
| else: | |
| lr_ratio = self.lr_min_ratio | |
| lr = lr_ratio * lr | |
| return lr | |
| def get_lr(self): | |
| return [self._get_sched_lr(lr, self.last_epoch) for lr in self.base_lrs] | |