Spaces:
Running
on
L40S
Running
on
L40S
| # coding=utf-8 | |
| # Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. | |
| # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """OpenAI GPT-2 configuration""" | |
| from collections import OrderedDict | |
| from typing import Any, List, Mapping, Optional | |
| from transformers import PreTrainedTokenizer, TensorType, is_torch_available | |
| from transformers.configuration_utils import PretrainedConfig | |
| from transformers.onnx import OnnxConfigWithPast, PatchingSpec | |
| from transformers.utils import logging | |
| logger = logging.get_logger(__name__) | |
| class GPT2Config(PretrainedConfig): | |
| """ | |
| This is the configuration class to store the configuration of a [`GPT2Model`] or a [`TFGPT2Model`]. It is used to | |
| instantiate a GPT-2 model according to the specified arguments, defining the model architecture. Instantiating a | |
| configuration with the defaults will yield a similar configuration to that of the GPT-2 | |
| [openai-community/gpt2](https://huggingface.co/openai-community/gpt2) architecture. | |
| Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
| documentation from [`PretrainedConfig`] for more information. | |
| Args: | |
| vocab_size (`int`, *optional*, defaults to 50257): | |
| Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the | |
| `inputs_ids` passed when calling [`GPT2Model`] or [`TFGPT2Model`]. | |
| n_positions (`int`, *optional*, defaults to 1024): | |
| The maximum sequence length that this model might ever be used with. Typically set this to something large | |
| just in case (e.g., 512 or 1024 or 2048). | |
| n_embd (`int`, *optional*, defaults to 768): | |
| Dimensionality of the embeddings and hidden states. | |
| n_layer (`int`, *optional*, defaults to 12): | |
| Number of hidden layers in the Transformer encoder. | |
| n_head (`int`, *optional*, defaults to 12): | |
| Number of attention heads for each attention layer in the Transformer encoder. | |
| n_inner (`int`, *optional*): | |
| Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd | |
| activation_function (`str`, *optional*, defaults to `"gelu_new"`): | |
| Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`. | |
| resid_pdrop (`float`, *optional*, defaults to 0.1): | |
| The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
| embd_pdrop (`float`, *optional*, defaults to 0.1): | |
| The dropout ratio for the embeddings. | |
| attn_pdrop (`float`, *optional*, defaults to 0.1): | |
| The dropout ratio for the attention. | |
| layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): | |
| The epsilon to use in the layer normalization layers. | |
| initializer_range (`float`, *optional*, defaults to 0.02): | |
| The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
| summary_type (`string`, *optional*, defaults to `"cls_index"`): | |
| Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and | |
| [`TFGPT2DoubleHeadsModel`]. | |
| Has to be one of the following options: | |
| - `"last"`: Take the last token hidden state (like XLNet). | |
| - `"first"`: Take the first token hidden state (like BERT). | |
| - `"mean"`: Take the mean of all tokens hidden states. | |
| - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2). | |
| - `"attn"`: Not implemented now, use multi-head attention. | |
| summary_use_proj (`bool`, *optional*, defaults to `True`): | |
| Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and | |
| [`TFGPT2DoubleHeadsModel`]. | |
| Whether or not to add a projection after the vector extraction. | |
| summary_activation (`str`, *optional*): | |
| Argument used when doing sequence summary. Used in for the multiple choice head in | |
| [`GPT2DoubleHeadsModel`]. | |
| Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation. | |
| summary_proj_to_labels (`bool`, *optional*, defaults to `True`): | |
| Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and | |
| [`TFGPT2DoubleHeadsModel`]. | |
| Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes. | |
| summary_first_dropout (`float`, *optional*, defaults to 0.1): | |
| Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and | |
| [`TFGPT2DoubleHeadsModel`]. | |
| The dropout ratio to be used after the projection and activation. | |
| scale_attn_weights (`bool`, *optional*, defaults to `True`): | |
| Scale attention weights by dividing by sqrt(hidden_size).. | |
| use_cache (`bool`, *optional*, defaults to `True`): | |
| Whether or not the model should return the last key/values attentions (not used by all models). | |
| bos_token_id (`int`, *optional*, defaults to 50256): | |
| Id of the beginning of sentence token in the vocabulary. | |
| eos_token_id (`int`, *optional*, defaults to 50256): | |
| Id of the end of sentence token in the vocabulary. | |
| scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`): | |
| Whether to additionally scale attention weights by `1 / layer_idx + 1`. | |
| reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`): | |
| Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention | |
| dot-product/softmax to float() when training with mixed precision. | |
| Example: | |
| ```python | |
| >>> from transformers import GPT2Config, GPT2Model | |
| >>> # Initializing a GPT2 configuration | |
| >>> configuration = GPT2Config() | |
| >>> # Initializing a model (with random weights) from the configuration | |
| >>> model = GPT2Model(configuration) | |
| >>> # Accessing the model configuration | |
| >>> configuration = model.config | |
| ```""" | |
| model_type = "gpt2" | |
| keys_to_ignore_at_inference = ["past_key_values"] | |
| attribute_map = { | |
| "hidden_size": "n_embd", | |
| "max_position_embeddings": "n_positions", | |
| "num_attention_heads": "n_head", | |
| "num_hidden_layers": "n_layer", | |
| } | |
| def __init__( | |
| self, | |
| vocab_size=50257, | |
| n_positions=1280, | |
| n_embd=768, | |
| n_layer=12, | |
| n_head=8, | |
| n_inner=None, | |
| activation_function="gelu_new", | |
| resid_pdrop=0.1, | |
| embd_pdrop=0.1, | |
| attn_pdrop=0.1, | |
| layer_norm_epsilon=1e-5, | |
| initializer_range=0.02, | |
| summary_type="cls_index", | |
| summary_use_proj=True, | |
| summary_activation=None, | |
| summary_proj_to_labels=True, | |
| summary_first_dropout=0.1, | |
| scale_attn_weights=True, | |
| use_cache=True, | |
| bos_token_id=50256, | |
| eos_token_id=50256, | |
| scale_attn_by_inverse_layer_idx=False, | |
| reorder_and_upcast_attn=False, | |
| **kwargs, | |
| ): | |
| self.vocab_size = vocab_size | |
| self.n_positions = n_positions | |
| self.n_embd = n_embd | |
| self.n_layer = n_layer | |
| self.n_head = n_head | |
| self.n_inner = n_inner | |
| self.activation_function = activation_function | |
| self.resid_pdrop = resid_pdrop | |
| self.embd_pdrop = embd_pdrop | |
| self.attn_pdrop = attn_pdrop | |
| self.layer_norm_epsilon = layer_norm_epsilon | |
| self.initializer_range = initializer_range | |
| self.summary_type = summary_type | |
| self.summary_use_proj = summary_use_proj | |
| self.summary_activation = summary_activation | |
| self.summary_first_dropout = summary_first_dropout | |
| self.summary_proj_to_labels = summary_proj_to_labels | |
| self.scale_attn_weights = scale_attn_weights | |
| self.use_cache = use_cache | |
| self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx | |
| self.reorder_and_upcast_attn = reorder_and_upcast_attn | |
| self.bos_token_id = bos_token_id | |
| self.eos_token_id = eos_token_id | |
| super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) | |
| class GPT2OnnxConfig(OnnxConfigWithPast): | |
| def __init__( | |
| self, | |
| config: PretrainedConfig, | |
| task: str = "default", | |
| patching_specs: List[PatchingSpec] = None, | |
| use_past: bool = False, | |
| ): | |
| super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past) | |
| if not getattr(self._config, "pad_token_id", None): | |
| # TODO: how to do that better? | |
| self._config.pad_token_id = 0 | |
| def inputs(self) -> Mapping[str, Mapping[int, str]]: | |
| common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}}) | |
| if self.use_past: | |
| self.fill_with_past_key_values_(common_inputs, direction="inputs") | |
| common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"} | |
| else: | |
| common_inputs["attention_mask"] = {0: "batch", 1: "sequence"} | |
| return common_inputs | |
| def num_layers(self) -> int: | |
| return self._config.n_layer | |
| def num_attention_heads(self) -> int: | |
| return self._config.n_head | |
| def generate_dummy_inputs( | |
| self, | |
| tokenizer: PreTrainedTokenizer, | |
| batch_size: int = -1, | |
| seq_length: int = -1, | |
| is_pair: bool = False, | |
| framework: Optional[TensorType] = None, | |
| ) -> Mapping[str, Any]: | |
| common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs( | |
| tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework | |
| ) | |
| # We need to order the input in the way they appears in the forward() | |
| ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]}) | |
| # Need to add the past_keys | |
| if self.use_past: | |
| if not is_torch_available(): | |
| raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") | |
| else: | |
| import torch | |
| batch, seqlen = common_inputs["input_ids"].shape | |
| # Not using the same length for past_key_values | |
| past_key_values_length = seqlen + 2 | |
| past_shape = ( | |
| batch, | |
| self.num_attention_heads, | |
| past_key_values_length, | |
| self._config.hidden_size // self.num_attention_heads, | |
| ) | |
| ordered_inputs["past_key_values"] = [ | |
| (torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(self.num_layers) | |
| ] | |
| ordered_inputs["attention_mask"] = common_inputs["attention_mask"] | |
| if self.use_past: | |
| mask_dtype = ordered_inputs["attention_mask"].dtype | |
| ordered_inputs["attention_mask"] = torch.cat( | |
| [ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1 | |
| ) | |
| return ordered_inputs | |
| def default_onnx_opset(self) -> int: | |
| return 13 |