Spaces:
Running
on
L40S
Running
on
L40S
| from musiclm_pytorch import MuLaNEmbedder | |
| import hydra | |
| import librosa | |
| import torch | |
| import yaml | |
| from prodict import Prodict | |
| from musiclm_pytorch import AudioSpectrogramTransformerPretrained, TextTransformerPretrained, MuLaN | |
| from omegaconf import DictConfig | |
| import os | |
| def get_pretrained_config(root, name): | |
| if root is None: | |
| return name | |
| path = os.path.join(root, name) | |
| #获取snapshots目录下的目录 | |
| config_dir = os.path.join(path, 'snapshots') | |
| config_files = os.listdir(config_dir) | |
| assert len(config_files) == 1 | |
| config_path = os.path.join(config_dir, config_files[0]) | |
| return config_path | |
| def create_MuLaN_from_config(config: DictConfig): | |
| """ | |
| Create a MuLaN model from a configuration file. | |
| """ | |
| pretraind_root = config.model.pretraind_root | |
| audio_model_name = get_pretrained_config(pretraind_root, config.model.audio_model.name) | |
| audio_transformer = AudioSpectrogramTransformerPretrained( | |
| model_name = audio_model_name, | |
| model_dim = config.model.audio_model.model_dim, | |
| use_layer_idx = config.model.audio_model.use_layer_idx, | |
| **config.model.audio_transformer | |
| ) | |
| text_model_name = get_pretrained_config(pretraind_root, config.model.text_model.name) | |
| text_transformer = TextTransformerPretrained( | |
| model_name = text_model_name, | |
| **config.model.text_transformer | |
| ) | |
| mulan = MuLaN( | |
| audio_transformer = audio_transformer, | |
| text_transformer = text_transformer, | |
| **config.model.mulan | |
| ) | |
| return mulan | |
| def create_CLAP_model( model_kwargs = {}, ckpt_path = None ): | |
| from musiclm_pytorch import SoftmaxContrastiveLearning | |
| import laion_clap | |
| from torch import nn | |
| import torch | |
| from torchaudio.functional import resample | |
| import numpy as np | |
| from functools import partial | |
| # quantization | |
| def int16_to_float32(x): | |
| return (x / 32767.0).float() | |
| def float32_to_int16(x): | |
| x = torch.clip(x, min=-1., max=1.) | |
| return (x * 32767.).int() | |
| model = laion_clap.CLAP_Module(enable_fusion=False, **model_kwargs) | |
| if ckpt_path is not None: | |
| model.load_ckpt(ckpt_path) | |
| else: | |
| model.load_ckpt() | |
| class CLAP_Model(nn.Module): | |
| def __init__(self, model, sr = 24000, decoupled_contrastive_learning = True): | |
| super().__init__() | |
| self.model = model | |
| self.model.eval() | |
| self.orig_sr = sr | |
| klass = partial(SoftmaxContrastiveLearning, decoupled_contrastive_learning = decoupled_contrastive_learning) | |
| self.contrast = klass() | |
| def forward(self, wavs, raw_texts): | |
| with torch.no_grad(): | |
| wavs = int16_to_float32(float32_to_int16(resample(wavs, self.orig_sr, 48000))) | |
| audio_latents = self.model.get_audio_embedding_from_data(x = wavs, use_tensor=True).float() | |
| text_latents = model.get_text_embedding(raw_texts, use_tensor=True) | |
| cl_loss = self.contrast(audio_latents, text_latents) | |
| return cl_loss | |
| clap = CLAP_Model(model) | |
| return clap | |
| def get_mulan(config): | |
| with open(config, "r") as stream: | |
| mulan_config = yaml.safe_load(stream) | |
| mulan_config = Prodict.from_dict(mulan_config) | |
| ckpt_path = mulan_config.checkpoint_path | |
| mulan = create_MuLaN_from_config(mulan_config) | |
| mulan_embedder = MuLaNEmbedder(mulan, checkpoint_path = ckpt_path) | |
| mulan_embedder.eval() | |
| return mulan_embedder | |