Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List
|
| 2 |
+
import os
|
| 3 |
+
import numpy as np
|
| 4 |
+
import supervision as sv
|
| 5 |
+
import uuid
|
| 6 |
+
import torch
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
+
import gradio as gr
|
| 9 |
+
import torch
|
| 10 |
+
import numpy as np
|
| 11 |
+
from PIL import Image
|
| 12 |
+
from transformers import AutoImageProcessor, AutoModelForObjectDetection
|
| 13 |
+
|
| 14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 15 |
+
|
| 16 |
+
processor = AutoImageProcessor.from_pretrained("PekingU/rtdetr_r50vd_coco_o365")
|
| 17 |
+
model = AutoModelForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd_coco_o365").to(device)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator()
|
| 21 |
+
MASK_ANNOTATOR = sv.MaskAnnotator()
|
| 22 |
+
LABEL_ANNOTATOR = sv.LabelAnnotator()
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def calculate_end_frame_index(source_video_path):
|
| 26 |
+
video_info = sv.VideoInfo.from_video_path(source_video_path)
|
| 27 |
+
return min(
|
| 28 |
+
video_info.total_frames,
|
| 29 |
+
video_info.fps * 2
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def annotate_image(
|
| 34 |
+
input_image,
|
| 35 |
+
detections,
|
| 36 |
+
labels
|
| 37 |
+
) -> np.ndarray:
|
| 38 |
+
output_image = MASK_ANNOTATOR.annotate(input_image, detections)
|
| 39 |
+
output_image = BOUNDING_BOX_ANNOTATOR.annotate(output_image, detections)
|
| 40 |
+
output_image = LABEL_ANNOTATOR.annotate(output_image, detections, labels=labels)
|
| 41 |
+
return output_image
|
| 42 |
+
|
| 43 |
+
def process_video(
|
| 44 |
+
input_video,
|
| 45 |
+
progress=gr.Progress(track_tqdm=True)
|
| 46 |
+
):
|
| 47 |
+
video_info = sv.VideoInfo.from_video_path(input_video)
|
| 48 |
+
total = calculate_end_frame_index(input_video)
|
| 49 |
+
frame_generator = sv.get_video_frames_generator(
|
| 50 |
+
source_path=input_video,
|
| 51 |
+
end=total
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
result_file_name = f"{uuid.uuid4()}.mp4"
|
| 55 |
+
result_file_path = os.path.join("./", result_file_name)
|
| 56 |
+
with sv.VideoSink(result_file_path, video_info=video_info) as sink:
|
| 57 |
+
for _ in tqdm(range(total), desc="Processing video.."):
|
| 58 |
+
frame = next(frame_generator)
|
| 59 |
+
results = query(Image.fromarray(frame))
|
| 60 |
+
final_labels = []
|
| 61 |
+
detections = []
|
| 62 |
+
|
| 63 |
+
detections = sv.Detections.from_transformers(results[0])
|
| 64 |
+
|
| 65 |
+
for label in results[0]["labels"]:
|
| 66 |
+
final_labels.append(model.config.id2label[label.item()])
|
| 67 |
+
frame = annotate_image(
|
| 68 |
+
input_image=frame,
|
| 69 |
+
detections=detections,
|
| 70 |
+
labels=final_labels,
|
| 71 |
+
)
|
| 72 |
+
sink.write_frame(frame)
|
| 73 |
+
return result_file_path
|
| 74 |
+
|
| 75 |
+
def query(image):
|
| 76 |
+
inputs = processor(images=image, return_tensors="pt").to(device)
|
| 77 |
+
with torch.no_grad():
|
| 78 |
+
outputs = model(**inputs)
|
| 79 |
+
target_sizes = torch.Tensor([image.size])
|
| 80 |
+
|
| 81 |
+
results = processor.post_process_object_detection(outputs=outputs, threshold=0.6, target_sizes=target_sizes)
|
| 82 |
+
return results
|
| 83 |
+
|
| 84 |
+
with gr.Blocks() as demo:
|
| 85 |
+
gr.Markdown("## Real Time Object Tracking with RT-DETR")
|
| 86 |
+
gr.Markdown("This is a demo for object tracking using RT-DETR.")
|
| 87 |
+
gr.Markdown("Simply upload a video and enter the candidate labels, or try the example below. 👇")
|
| 88 |
+
with gr.Row():
|
| 89 |
+
with gr.Column():
|
| 90 |
+
input_video = gr.Video(
|
| 91 |
+
label='Input Video'
|
| 92 |
+
)
|
| 93 |
+
submit = gr.Button()
|
| 94 |
+
with gr.Column():
|
| 95 |
+
output_video = gr.Video(
|
| 96 |
+
label='Output Video'
|
| 97 |
+
)
|
| 98 |
+
gr.Examples(
|
| 99 |
+
fn=process_video,
|
| 100 |
+
examples=[["./cats.mp4"]],
|
| 101 |
+
inputs=[
|
| 102 |
+
input_video
|
| 103 |
+
],
|
| 104 |
+
outputs=output_video
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
submit.click(
|
| 108 |
+
fn=process_video,
|
| 109 |
+
inputs=input_video,
|
| 110 |
+
outputs=output_video
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
demo.launch(debug=True, show_error=True)
|