Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +149 -0
- requirements.txt +0 -0
app.py
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import transformers
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
|
| 5 |
+
from transformers import AutoModelForSeq2SeqLM, pipeline
|
| 6 |
+
from huggingface_hub import login
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import numpy as np
|
| 9 |
+
|
| 10 |
+
new_model = "tensorgirl/finetuned-gemma"
|
| 11 |
+
model = AutoModelForCausalLM.from_pretrained(new_model, trust_remote_code=True)
|
| 12 |
+
tokenizer = AutoTokenizer.from_pretrained(new_model, trust_remote_code=True)
|
| 13 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 14 |
+
|
| 15 |
+
generator = transformers.pipeline(
|
| 16 |
+
"text-generation",
|
| 17 |
+
model=model,
|
| 18 |
+
tokenizer=tokenizer,
|
| 19 |
+
torch_dtype=torch.bfloat16,
|
| 20 |
+
trust_remote_code=True,
|
| 21 |
+
device_map="auto",
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
|
| 25 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
|
| 26 |
+
device = 0 if torch.cuda.is_available() else -1
|
| 27 |
+
|
| 28 |
+
def translate(text, src_lang, tgt_lang):
|
| 29 |
+
|
| 30 |
+
translation_pipeline = pipeline("translation", model=model, tokenizer=tokenizer, src_lang=src_lang, tgt_lang=tgt_lang, max_length=400, device=device)
|
| 31 |
+
result = translation_pipeline(text)
|
| 32 |
+
return result[0]['translation_text']
|
| 33 |
+
|
| 34 |
+
def English(audio):
|
| 35 |
+
|
| 36 |
+
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
|
| 37 |
+
sr, y = audio
|
| 38 |
+
y = y.astype(np.float32)
|
| 39 |
+
y = np.max(np.abs(y))
|
| 40 |
+
|
| 41 |
+
return transcriber({"sampling_rate": sr, "raw": y})["text"]
|
| 42 |
+
|
| 43 |
+
def Hindi(audio):
|
| 44 |
+
|
| 45 |
+
transcriber = pipeline("automatic-speech-recognition", model="theainerd/Wav2Vec2-large-xlsr-hindi")
|
| 46 |
+
sr, y = audio
|
| 47 |
+
y = y.astype(np.float32)
|
| 48 |
+
y = np.max(np.abs(y))
|
| 49 |
+
|
| 50 |
+
text = transcriber({"sampling_rate":sr, "raw":y})["text"]
|
| 51 |
+
|
| 52 |
+
return translate(text, "hin_Deva", "eng_Latn")
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def Telegu(audio):
|
| 56 |
+
|
| 57 |
+
transcriber = pipeline("automatic-speech-recognition", model="anuragshas/wav2vec2-large-xlsr-53-telugu")
|
| 58 |
+
sr, y = audio
|
| 59 |
+
y = y.astype(np.float32)
|
| 60 |
+
y = np.max(np.abs(y))
|
| 61 |
+
|
| 62 |
+
text = transcriber({"sampling_rate":sr, "raw":y})["text"]
|
| 63 |
+
|
| 64 |
+
return translate(text, "tel_Telu", "eng_Latn")
|
| 65 |
+
|
| 66 |
+
def Tamil(audio):
|
| 67 |
+
|
| 68 |
+
transcriber = pipeline("automatic-speech-recognition", model="Harveenchadha/vakyansh-wav2vec2-tamil-tam-250")
|
| 69 |
+
sr, y = audio
|
| 70 |
+
y = y.astype(np.float32)
|
| 71 |
+
y = np.max(np.abs(y))
|
| 72 |
+
|
| 73 |
+
text = transcriber({"sampling_rate":sr, "raw":y})["text"]
|
| 74 |
+
|
| 75 |
+
return translate(text, "tam_Taml", "eng_Latn")
|
| 76 |
+
|
| 77 |
+
def Kannada(audio):
|
| 78 |
+
|
| 79 |
+
transcriber = pipeline("automatic-speech-recognition", model="vasista22/whisper-kannada-medium")
|
| 80 |
+
sr, y = audio
|
| 81 |
+
y = y.astype(np.float32)
|
| 82 |
+
y = np.max(np.abs(y))
|
| 83 |
+
|
| 84 |
+
text = transcriber({"sampling_rate":sr, "raw":y})["text"]
|
| 85 |
+
|
| 86 |
+
return translate(text, "kan_Knda", "eng_Latn")
|
| 87 |
+
|
| 88 |
+
def predict(audio, language):
|
| 89 |
+
|
| 90 |
+
if language == English:
|
| 91 |
+
message = English(audio)
|
| 92 |
+
|
| 93 |
+
if language == Hindi:
|
| 94 |
+
message = Hindi(audio)
|
| 95 |
+
|
| 96 |
+
if language == Telegu:
|
| 97 |
+
message = Telegu(audio)
|
| 98 |
+
|
| 99 |
+
if language == Tamil:
|
| 100 |
+
message = Tamil(audio)
|
| 101 |
+
|
| 102 |
+
if language == Kannada:
|
| 103 |
+
message = Kannada(audio)
|
| 104 |
+
|
| 105 |
+
print(message)
|
| 106 |
+
|
| 107 |
+
sequences = generator(
|
| 108 |
+
message,
|
| 109 |
+
max_length=200,
|
| 110 |
+
do_sample=False,
|
| 111 |
+
top_k=10,
|
| 112 |
+
num_return_sequences=1,
|
| 113 |
+
eos_token_id=tokenizer.eos_token_id,)
|
| 114 |
+
|
| 115 |
+
answer = ""
|
| 116 |
+
for seq in sequences:
|
| 117 |
+
answer = answer + seq['generated_text'] + " "
|
| 118 |
+
|
| 119 |
+
print(answer)
|
| 120 |
+
if language == English:
|
| 121 |
+
return answer
|
| 122 |
+
|
| 123 |
+
if language == Hindi:
|
| 124 |
+
return translate(text,eng_Latn, hin_Deva)
|
| 125 |
+
|
| 126 |
+
if language == Telegu:
|
| 127 |
+
return translate(text,eng_Latn, tel_Telu)
|
| 128 |
+
|
| 129 |
+
if language == Tamil:
|
| 130 |
+
return translate(text, eng_Latn, tam_Taml)
|
| 131 |
+
|
| 132 |
+
if language == Kannada:
|
| 133 |
+
return translate(text, eng_Latn, kan_Knda)
|
| 134 |
+
|
| 135 |
+
return answer
|
| 136 |
+
|
| 137 |
+
demo = gr.Interface(
|
| 138 |
+
predict,
|
| 139 |
+
[gr.Audio(),
|
| 140 |
+
gr.Dropdown(
|
| 141 |
+
["Hindi", "Telegu", "Tamil", "Kannada", "English"], label="Language", info="Please select language of your choice"
|
| 142 |
+
)],
|
| 143 |
+
"text",
|
| 144 |
+
title = "Farmers-Helper-Bot",
|
| 145 |
+
description = "Ask your queries in your regional Language",
|
| 146 |
+
theme=gr.themes.Soft()
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
demo.launch(share=True)
|
requirements.txt
ADDED
|
File without changes
|