Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -98,6 +98,104 @@ if st.session_state != "":
|
|
| 98 |
except Exception as e:
|
| 99 |
st.error(e)
|
| 100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
# We store the conversation in the session state.
|
| 102 |
# This will be use to render the chat conversation.
|
| 103 |
# We initialize it with the first message we want to be greeted with.
|
|
|
|
| 98 |
except Exception as e:
|
| 99 |
st.error(e)
|
| 100 |
|
| 101 |
+
import os
|
| 102 |
+
from langchain_community.document_loaders import PyPDFLoader
|
| 103 |
+
from langchain_community.vectorstores import faiss
|
| 104 |
+
from langchain.memory import ConversationBufferMemory
|
| 105 |
+
from langchain_google_genai import ChatGoogleGenerativeAI, GoogleGenerativeAIEmbeddings
|
| 106 |
+
from tempfile import NamedTemporaryFile
|
| 107 |
+
from dotenv import load_dotenv
|
| 108 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 109 |
+
from langchain.chains import ConversationalRetrievalChain
|
| 110 |
+
import streamlit as st
|
| 111 |
+
import nest_asyncio
|
| 112 |
+
|
| 113 |
+
nest_asyncio.apply()
|
| 114 |
+
load_dotenv()
|
| 115 |
+
|
| 116 |
+
# Initialize app resources
|
| 117 |
+
st.set_page_config(page_title="StudyAssist", page_icon=":book:")
|
| 118 |
+
st.title("StudyAssist(pharmassist-v0)")
|
| 119 |
+
st.write(
|
| 120 |
+
"An AI/RAG application to aid students in their studies, specially optimized for the pharm 028 students. In simpler terms, chat with your pdf"
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
@st.cache_resource
|
| 125 |
+
def initialize_resources():
|
| 126 |
+
llm_gemini = ChatGoogleGenerativeAI(
|
| 127 |
+
model="gemini-1.5-flash-latest", google_api_key=os.getenv("GOOGLE_API_KEY")
|
| 128 |
+
)
|
| 129 |
+
return llm_gemini
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def get_retriever(pdf_file):
|
| 133 |
+
with NamedTemporaryFile(suffix="pdf") as temp:
|
| 134 |
+
temp.write(pdf_file.getvalue())
|
| 135 |
+
pdf_loader = PyPDFLoader(temp.name, extract_images=True)
|
| 136 |
+
pages = pdf_loader.load()
|
| 137 |
+
|
| 138 |
+
# st.write(f"AI Chatbot for {course_material}")
|
| 139 |
+
|
| 140 |
+
underlying_embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
| 141 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 142 |
+
chunk_size=1000,
|
| 143 |
+
chunk_overlap=20,
|
| 144 |
+
length_function=len,
|
| 145 |
+
is_separator_regex=False,
|
| 146 |
+
separators="\n",
|
| 147 |
+
)
|
| 148 |
+
documents = text_splitter.split_documents(pages)
|
| 149 |
+
vectorstore = faiss.FAISS.from_documents(documents, underlying_embeddings)
|
| 150 |
+
doc_retiever = vectorstore.as_retriever(
|
| 151 |
+
search_type="mmr", search_kwargs={"k": 5, "fetch_k": 10}
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
return doc_retiever
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
chat_model = initialize_resources()
|
| 158 |
+
|
| 159 |
+
# Streamlit UI
|
| 160 |
+
# Course list and pdf retrieval
|
| 161 |
+
|
| 162 |
+
courses = ["PMB", "PCL", "Kelechi_research"] # "GSP", "CPM", "PCG", "PCH"
|
| 163 |
+
course_pdfs = None
|
| 164 |
+
doc_retriever = None
|
| 165 |
+
conversational_chain = None
|
| 166 |
+
|
| 167 |
+
# course = st.sidebar.selectbox("Choose course", (courses))
|
| 168 |
+
# docs_path = f"pdfs/{course}"
|
| 169 |
+
# course_pdfs = os.listdir(docs_path)
|
| 170 |
+
# pdfs = [os.path.join(docs_path, pdf) for pdf in course_pdfs]
|
| 171 |
+
|
| 172 |
+
course_material = "{Not selected}"
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
# @st.cache_resource
|
| 176 |
+
def query_response(query, _retriever):
|
| 177 |
+
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
| 178 |
+
conversational_chain = ConversationalRetrievalChain.from_llm(
|
| 179 |
+
llm=chat_model, retriever=_retriever, memory=memory, verbose=False
|
| 180 |
+
)
|
| 181 |
+
response = conversational_chain.run(query)
|
| 182 |
+
|
| 183 |
+
return response
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
if "doc" not in st.session_state:
|
| 187 |
+
st.session_state.doc = ""
|
| 188 |
+
|
| 189 |
+
course_material = st.file_uploader("or Upload your own pdf", type="pdf")
|
| 190 |
+
|
| 191 |
+
if st.session_state != "":
|
| 192 |
+
try:
|
| 193 |
+
with st.spinner("loading document.."):
|
| 194 |
+
doc_retriever = get_retriever(course_material)
|
| 195 |
+
st.success("File loading successful, vector db initialize")
|
| 196 |
+
except Exception as e:
|
| 197 |
+
st.error(e)
|
| 198 |
+
|
| 199 |
# We store the conversation in the session state.
|
| 200 |
# This will be use to render the chat conversation.
|
| 201 |
# We initialize it with the first message we want to be greeted with.
|