Spaces:
Sleeping
Sleeping
| from transformers import AutoModelForObjectDetection | |
| import torch | |
| from pdf2image import convert_from_bytes | |
| from torchvision import transforms | |
| from transformers import TableTransformerForObjectDetection | |
| import numpy as np | |
| import easyocr | |
| from tqdm.auto import tqdm | |
| model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-detection", revision="no_timm") | |
| model.config.id2label | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model.to(device) | |
| structure_model = TableTransformerForObjectDetection.from_pretrained("microsoft/table-structure-recognition-v1.1-all") | |
| structure_model.to(device) | |
| reader = easyocr.Reader(['en'], gpu=False) | |
| def pdf_to_img(pdf_path): | |
| image_list = [] | |
| images = convert_from_bytes(pdf_path) | |
| for i in range(len(images)): | |
| image = images[i].convert("RGB") | |
| image_list.append(image) | |
| return image_list | |
| class MaxResize(object): | |
| def __init__(self, max_size=800): | |
| self.max_size = max_size | |
| def __call__(self, image): | |
| width, height = image.size | |
| current_max_size = max(width, height) | |
| scale = self.max_size / current_max_size | |
| resized_image = image.resize((int(round(scale*width)), int(round(scale*height)))) | |
| return resized_image | |
| def box_cxcywh_to_xyxy(x): | |
| x_c, y_c, w, h = x.unbind(-1) | |
| b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] | |
| return torch.stack(b, dim=1) | |
| def rescale_bboxes(out_bbox, size): | |
| img_w, img_h = size | |
| b = box_cxcywh_to_xyxy(out_bbox) | |
| b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32) | |
| return b | |
| def outputs_to_objects(outputs, img_size, id2label): | |
| m = outputs.logits.softmax(-1).max(-1) | |
| pred_labels = list(m.indices.detach().cpu().numpy())[0] | |
| pred_scores = list(m.values.detach().cpu().numpy())[0] | |
| pred_bboxes = outputs['pred_boxes'].detach().cpu()[0] | |
| pred_bboxes = [elem.tolist() for elem in rescale_bboxes(pred_bboxes, img_size)] | |
| objects = [] | |
| for label, score, bbox in zip(pred_labels, pred_scores, pred_bboxes): | |
| class_label = id2label[int(label)] | |
| if not class_label == 'no object': | |
| objects.append({'label': class_label, 'score': float(score), | |
| 'bbox': [float(elem) for elem in bbox]}) | |
| return objects | |
| def objects_to_crops(img, tokens, objects, class_thresholds, padding=10): | |
| """ | |
| Process the bounding boxes produced by the table detection model into | |
| cropped table images and cropped tokens. | |
| """ | |
| table_crops = [] | |
| for obj in objects: | |
| if obj['score'] < class_thresholds[obj['label']]: | |
| continue | |
| cropped_table = {} | |
| bbox = obj['bbox'] | |
| bbox = [bbox[0]-padding, bbox[1]-padding, bbox[2]+padding, bbox[3]+padding] | |
| cropped_img = img.crop(bbox) | |
| table_tokens = [token for token in tokens if iob(token['bbox'], bbox) >= 0.5] | |
| for token in table_tokens: | |
| token['bbox'] = [token['bbox'][0]-bbox[0], | |
| token['bbox'][1]-bbox[1], | |
| token['bbox'][2]-bbox[0], | |
| token['bbox'][3]-bbox[1]] | |
| # If table is predicted to be rotated, rotate cropped image and tokens/words: | |
| if obj['label'] == 'table rotated': | |
| cropped_img = cropped_img.rotate(270, expand=True) | |
| for token in table_tokens: | |
| bbox = token['bbox'] | |
| bbox = [cropped_img.size[0]-bbox[3]-1, | |
| bbox[0], | |
| cropped_img.size[0]-bbox[1]-1, | |
| bbox[2]] | |
| token['bbox'] = bbox | |
| cropped_table['image'] = cropped_img | |
| cropped_table['tokens'] = table_tokens | |
| table_crops.append(cropped_table) | |
| return table_crops | |
| def get_cell_coordinates_by_row(table_data): | |
| # Extract rows and columns | |
| rows = [entry for entry in table_data if entry['label'] == 'table row'] | |
| columns = [entry for entry in table_data if entry['label'] == 'table column'] | |
| # Sort rows and columns by their Y and X coordinates, respectively | |
| rows.sort(key=lambda x: x['bbox'][1]) | |
| columns.sort(key=lambda x: x['bbox'][0]) | |
| # Function to find cell coordinates | |
| def find_cell_coordinates(row, column): | |
| cell_bbox = [column['bbox'][0], row['bbox'][1], column['bbox'][2], row['bbox'][3]] | |
| return cell_bbox | |
| # Generate cell coordinates and count cells in each row | |
| cell_coordinates = [] | |
| for row in rows: | |
| row_cells = [] | |
| for column in columns: | |
| cell_bbox = find_cell_coordinates(row, column) | |
| row_cells.append({'column': column['bbox'], 'cell': cell_bbox}) | |
| # Sort cells in the row by X coordinate | |
| row_cells.sort(key=lambda x: x['column'][0]) | |
| # Append row information to cell_coordinates | |
| cell_coordinates.append({'row': row['bbox'], 'cells': row_cells, 'cell_count': len(row_cells)}) | |
| # Sort rows from top to bottom | |
| cell_coordinates.sort(key=lambda x: x['row'][1]) | |
| return cell_coordinates | |
| def apply_ocr(cell_coordinates, cropped_table): | |
| # let's OCR row by row | |
| data = dict() | |
| max_num_columns = 0 | |
| for idx, row in enumerate(tqdm(cell_coordinates)): | |
| row_text = [] | |
| for cell in row["cells"]: | |
| # crop cell out of image | |
| cell_image = np.array(cropped_table.crop(cell["cell"])) | |
| # apply OCR | |
| result = reader.readtext(np.array(cell_image)) | |
| if len(result) > 0: | |
| # print([x[1] for x in list(result)]) | |
| text = " ".join([x[1] for x in result]) | |
| row_text.append(text) | |
| if len(row_text) > max_num_columns: | |
| max_num_columns = len(row_text) | |
| data[idx] = row_text | |
| print("Max number of columns:", max_num_columns) | |
| # pad rows which don't have max_num_columns elements | |
| # to make sure all rows have the same number of columns | |
| for row, row_data in data.copy().items(): | |
| if len(row_data) != max_num_columns: | |
| row_data = row_data + ["" for _ in range(max_num_columns - len(row_data))] | |
| data[row] = row_data | |
| return data | |
| def get_tables(pdf_path): | |
| image_list = pdf_to_img(pdf_path) | |
| data_dict = {} | |
| for index, image in enumerate(image_list): | |
| detection_transform = transforms.Compose([ | |
| MaxResize(800), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
| ]) | |
| pixel_values = detection_transform(image).unsqueeze(0) | |
| pixel_values = pixel_values.to(device) | |
| with torch.no_grad(): | |
| outputs = model(pixel_values) | |
| id2label = model.config.id2label | |
| id2label[len(model.config.id2label)] = "no object" | |
| objects = outputs_to_objects(outputs, image.size, id2label) | |
| tokens = [] | |
| detection_class_thresholds = { | |
| "table": 0.5, | |
| "table rotated": 0.5, | |
| "no object": 10 | |
| } | |
| crop_padding = 10 | |
| tables_crops = objects_to_crops(image, tokens, objects, detection_class_thresholds, padding=0) | |
| for table_index, table_crop in enumerate(tables_crops): | |
| cropped_table = table_crop['image'].convert("RGB") | |
| structure_transform = transforms.Compose([ | |
| MaxResize(1000), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
| ]) | |
| pixel_values = structure_transform(cropped_table).unsqueeze(0) | |
| pixel_values = pixel_values.to(device) | |
| with torch.no_grad(): | |
| outputs = structure_model(pixel_values) | |
| structure_id2label = structure_model.config.id2label | |
| structure_id2label[len(structure_id2label)] = "no object" | |
| cells = outputs_to_objects(outputs, cropped_table.size, structure_id2label) | |
| if cells[0]['score'] > 0.95: | |
| cell_coordinates = get_cell_coordinates_by_row(cells) | |
| data = apply_ocr(cell_coordinates, cropped_table) | |
| data_dict[f"{index+1}_{table_index+1}"] = data | |
| return data_dict |