Spaces:
Runtime error
Runtime error
Commit
·
f2ca0de
1
Parent(s):
22a06c1
add efficiency metrics
Browse files- app.py +72 -33
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -4,6 +4,7 @@ from datasets import load_dataset
|
|
| 4 |
from transformers import AutoTokenizer, AutoModel
|
| 5 |
import chromadb
|
| 6 |
import gradio as gr
|
|
|
|
| 7 |
|
| 8 |
# Mean Pooling - Take attention mask into account for correct averaging
|
| 9 |
def meanpooling(output, mask):
|
|
@@ -11,7 +12,7 @@ def meanpooling(output, mask):
|
|
| 11 |
mask = mask.unsqueeze(-1).expand(embeddings.size()).float()
|
| 12 |
return torch.sum(embeddings * mask, 1) / torch.clamp(mask.sum(1), min=1e-9)
|
| 13 |
|
| 14 |
-
# Load the
|
| 15 |
dataset = load_dataset("thankrandomness/mimic-iii-sample")
|
| 16 |
|
| 17 |
# Load the model and tokenizer
|
|
@@ -30,36 +31,37 @@ def embed_text(text):
|
|
| 30 |
client = chromadb.Client()
|
| 31 |
collection = client.create_collection(name="pubmedbert_matryoshka_embeddings")
|
| 32 |
|
| 33 |
-
#
|
| 34 |
-
|
| 35 |
-
for
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
)
|
| 61 |
-
|
| 62 |
-
|
|
|
|
| 63 |
|
| 64 |
# Define retrieval function
|
| 65 |
def retrieve_relevant_text(input_text):
|
|
@@ -81,6 +83,33 @@ def retrieve_relevant_text(input_text):
|
|
| 81 |
})
|
| 82 |
return output
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
# Gradio interface
|
| 85 |
def gradio_interface(input_text):
|
| 86 |
results = retrieve_relevant_text(input_text)
|
|
@@ -88,7 +117,17 @@ def gradio_interface(input_text):
|
|
| 88 |
f"Similarity Score: {result['similarity_score']:.2f}, Code: {result['code']}, Description: {result['description']}"
|
| 89 |
for result in results
|
| 90 |
]
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
-
interface = gr.Interface(fn=gradio_interface, inputs="text", outputs="text")
|
| 94 |
interface.launch()
|
|
|
|
| 4 |
from transformers import AutoTokenizer, AutoModel
|
| 5 |
import chromadb
|
| 6 |
import gradio as gr
|
| 7 |
+
from sklearn.metrics import precision_score, recall_score, f1_score
|
| 8 |
|
| 9 |
# Mean Pooling - Take attention mask into account for correct averaging
|
| 10 |
def meanpooling(output, mask):
|
|
|
|
| 12 |
mask = mask.unsqueeze(-1).expand(embeddings.size()).float()
|
| 13 |
return torch.sum(embeddings * mask, 1) / torch.clamp(mask.sum(1), min=1e-9)
|
| 14 |
|
| 15 |
+
# Load the dataset
|
| 16 |
dataset = load_dataset("thankrandomness/mimic-iii-sample")
|
| 17 |
|
| 18 |
# Load the model and tokenizer
|
|
|
|
| 31 |
client = chromadb.Client()
|
| 32 |
collection = client.create_collection(name="pubmedbert_matryoshka_embeddings")
|
| 33 |
|
| 34 |
+
# Function to upsert data into ChromaDB
|
| 35 |
+
def upsert_data(dataset_split):
|
| 36 |
+
for i, row in enumerate(dataset_split):
|
| 37 |
+
for note in row['notes']:
|
| 38 |
+
text = note.get('text', '')
|
| 39 |
+
annotations_list = []
|
| 40 |
+
|
| 41 |
+
for annotation in note.get('annotations', []):
|
| 42 |
+
try:
|
| 43 |
+
code = annotation['code']
|
| 44 |
+
code_system = annotation['code_system']
|
| 45 |
+
description = annotation['description']
|
| 46 |
+
annotations_list.append({"code": code, "code_system": code_system, "description": description})
|
| 47 |
+
except KeyError as e:
|
| 48 |
+
print(f"Skipping annotation due to missing key: {e}")
|
| 49 |
+
|
| 50 |
+
if text and annotations_list:
|
| 51 |
+
embeddings = embed_text([text])[0]
|
| 52 |
+
|
| 53 |
+
# Upsert data, embeddings, and annotations into ChromaDB
|
| 54 |
+
for j, annotation in enumerate(annotations_list):
|
| 55 |
+
collection.upsert(
|
| 56 |
+
ids=[f"note_{note['note_id']}_{j}"],
|
| 57 |
+
embeddings=[embeddings],
|
| 58 |
+
metadatas=[annotation]
|
| 59 |
+
)
|
| 60 |
+
else:
|
| 61 |
+
print(f"Skipping note {note['note_id']} due to missing 'text' or 'annotations'")
|
| 62 |
+
|
| 63 |
+
# Upsert training data
|
| 64 |
+
upsert_data(dataset['train'])
|
| 65 |
|
| 66 |
# Define retrieval function
|
| 67 |
def retrieve_relevant_text(input_text):
|
|
|
|
| 83 |
})
|
| 84 |
return output
|
| 85 |
|
| 86 |
+
# Evaluate retrieval efficiency on the validation/test set
|
| 87 |
+
def evaluate_efficiency(dataset_split):
|
| 88 |
+
y_true = []
|
| 89 |
+
y_pred = []
|
| 90 |
+
for i, row in enumerate(dataset_split):
|
| 91 |
+
for note in row['notes']:
|
| 92 |
+
text = note.get('text', '')
|
| 93 |
+
annotations_list = [annotation['code'] for annotation in note.get('annotations', []) if 'code' in annotation]
|
| 94 |
+
|
| 95 |
+
if text and annotations_list:
|
| 96 |
+
retrieved_results = retrieve_relevant_text(text)
|
| 97 |
+
retrieved_codes = [result['code'] for result in retrieved_results]
|
| 98 |
+
|
| 99 |
+
# Ground truth
|
| 100 |
+
y_true.extend(annotations_list)
|
| 101 |
+
# Predictions
|
| 102 |
+
y_pred.extend(retrieved_codes[:len(annotations_list)]) # Assuming we compare the top-k results
|
| 103 |
+
|
| 104 |
+
precision = precision_score(y_true, y_pred, average='macro')
|
| 105 |
+
recall = recall_score(y_true, y_pred, average='macro')
|
| 106 |
+
f1 = f1_score(y_true, y_pred, average='macro')
|
| 107 |
+
|
| 108 |
+
return precision, recall, f1
|
| 109 |
+
|
| 110 |
+
# Calculate retrieval efficiency metrics
|
| 111 |
+
precision, recall, f1 = evaluate_efficiency(dataset['validation'])
|
| 112 |
+
|
| 113 |
# Gradio interface
|
| 114 |
def gradio_interface(input_text):
|
| 115 |
results = retrieve_relevant_text(input_text)
|
|
|
|
| 117 |
f"Similarity Score: {result['similarity_score']:.2f}, Code: {result['code']}, Description: {result['description']}"
|
| 118 |
for result in results
|
| 119 |
]
|
| 120 |
+
metrics = f"Precision: {precision:.2f}, Recall: {recall:.2f}, F1 Score: {f1:.2f}"
|
| 121 |
+
return formatted_results, metrics
|
| 122 |
+
|
| 123 |
+
interface = gr.Interface(
|
| 124 |
+
fn=gradio_interface,
|
| 125 |
+
inputs="text",
|
| 126 |
+
outputs=["text", "text"],
|
| 127 |
+
live=True
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
# Display retrieval efficiency metrics
|
| 131 |
+
print(f"Precision: {precision:.2f}, Recall: {recall:.2f}, F1 Score: {f1:.2f}")
|
| 132 |
|
|
|
|
| 133 |
interface.launch()
|
requirements.txt
CHANGED
|
@@ -2,4 +2,5 @@ torch
|
|
| 2 |
transformers
|
| 3 |
chromadb
|
| 4 |
gradio
|
| 5 |
-
numpy
|
|
|
|
|
|
| 2 |
transformers
|
| 3 |
chromadb
|
| 4 |
gradio
|
| 5 |
+
numpy
|
| 6 |
+
scikit-learn
|