Spaces:
Running
on
Zero
Running
on
Zero
| import gc | |
| import cv2 | |
| import insightface | |
| import torch | |
| import torch.nn as nn | |
| from basicsr.utils import img2tensor, tensor2img | |
| from facexlib.parsing import init_parsing_model | |
| from facexlib.utils.face_restoration_helper import FaceRestoreHelper | |
| from huggingface_hub import hf_hub_download, snapshot_download | |
| from insightface.app import FaceAnalysis | |
| from safetensors.torch import load_file | |
| from torchvision.transforms import InterpolationMode | |
| from torchvision.transforms.functional import normalize, resize | |
| from eva_clip import create_model_and_transforms | |
| from eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD | |
| from pulid.encoders_transformer import IDFormer, PerceiverAttentionCA | |
| class PuLIDPipeline(nn.Module): | |
| def __init__(self, dit, device, weight_dtype=torch.bfloat16, *args, **kwargs): | |
| super().__init__() | |
| self.device = device | |
| self.weight_dtype = weight_dtype | |
| double_interval = 2 | |
| single_interval = 4 | |
| # init encoder | |
| self.pulid_encoder = IDFormer().to(self.device, self.weight_dtype) | |
| num_ca = 19 // double_interval + 38 // single_interval | |
| if 19 % double_interval != 0: | |
| num_ca += 1 | |
| if 38 % single_interval != 0: | |
| num_ca += 1 | |
| self.pulid_ca = nn.ModuleList([ | |
| PerceiverAttentionCA().to(self.device, self.weight_dtype) for _ in range(num_ca) | |
| ]) | |
| dit.pulid_ca = self.pulid_ca | |
| dit.pulid_double_interval = double_interval | |
| dit.pulid_single_interval = single_interval | |
| # preprocessors | |
| # face align and parsing | |
| self.face_helper = FaceRestoreHelper( | |
| upscale_factor=1, | |
| face_size=512, | |
| crop_ratio=(1, 1), | |
| det_model='retinaface_resnet50', | |
| save_ext='png', | |
| device=self.device, | |
| ) | |
| self.face_helper.face_parse = None | |
| self.face_helper.face_parse = init_parsing_model(model_name='bisenet', device=self.device) | |
| # clip-vit backbone | |
| model, _, _ = create_model_and_transforms('EVA02-CLIP-L-14-336', 'eva_clip', force_custom_clip=True) | |
| model = model.visual | |
| self.clip_vision_model = model.to(self.device, dtype=self.weight_dtype) | |
| eva_transform_mean = getattr(self.clip_vision_model, 'image_mean', OPENAI_DATASET_MEAN) | |
| eva_transform_std = getattr(self.clip_vision_model, 'image_std', OPENAI_DATASET_STD) | |
| if not isinstance(eva_transform_mean, (list, tuple)): | |
| eva_transform_mean = (eva_transform_mean,) * 3 | |
| if not isinstance(eva_transform_std, (list, tuple)): | |
| eva_transform_std = (eva_transform_std,) * 3 | |
| self.eva_transform_mean = eva_transform_mean | |
| self.eva_transform_std = eva_transform_std | |
| # antelopev2 | |
| snapshot_download('DIAMONIK7777/antelopev2', local_dir='models/antelopev2') | |
| self.app = FaceAnalysis( | |
| name='antelopev2', root='.', providers=['CPUExecutionProvider'] | |
| ) | |
| self.app.prepare(ctx_id=0, det_size=(640, 640)) | |
| self.handler_ante = insightface.model_zoo.get_model('models/antelopev2/glintr100.onnx', providers=['CPUExecutionProvider']) | |
| self.handler_ante.prepare(ctx_id=0) | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| # self.load_pretrain() | |
| # other configs | |
| self.debug_img_list = [] | |
| def components_to_device(self, device): | |
| # everything but pulid_ca | |
| self.face_helper.face_det = self.face_helper.face_det.to(device) | |
| self.face_helper.face_parse = self.face_helper.face_parse.to(device) | |
| self.clip_vision_model = self.clip_vision_model.to(device) | |
| self.pulid_encoder = self.pulid_encoder.to(device) | |
| def load_pretrain(self, pretrain_path=None): | |
| hf_hub_download('guozinan/PuLID', 'pulid_flux_v0.9.1.safetensors', local_dir='models') | |
| ckpt_path = 'models/pulid_flux_v0.9.1.safetensors' | |
| if pretrain_path is not None: | |
| ckpt_path = pretrain_path | |
| state_dict = load_file(ckpt_path) | |
| state_dict_dict = {} | |
| for k, v in state_dict.items(): | |
| module = k.split('.')[0] | |
| state_dict_dict.setdefault(module, {}) | |
| new_k = k[len(module) + 1:] | |
| state_dict_dict[module][new_k] = v | |
| for module in state_dict_dict: | |
| print(f'loading from {module}') | |
| getattr(self, module).load_state_dict(state_dict_dict[module], strict=True) | |
| del state_dict | |
| del state_dict_dict | |
| def to_gray(self, img): | |
| x = 0.299 * img[:, 0:1] + 0.587 * img[:, 1:2] + 0.114 * img[:, 2:3] | |
| x = x.repeat(1, 3, 1, 1) | |
| return x | |
| def get_id_embedding(self, image, cal_uncond=False): | |
| """ | |
| Args: | |
| image: numpy rgb image, range [0, 255] | |
| """ | |
| self.face_helper.clean_all() | |
| self.debug_img_list = [] | |
| image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) | |
| # get antelopev2 embedding | |
| # for k in self.app.models.keys(): | |
| # self.app.models[k].session.set_providers(['CUDAExecutionProvider']) | |
| face_info = self.app.get(image_bgr) | |
| if len(face_info) > 0: | |
| face_info = sorted(face_info, key=lambda x: (x['bbox'][2] - x['bbox'][0]) * (x['bbox'][3] - x['bbox'][1]))[ | |
| -1 | |
| ] # only use the maximum face | |
| id_ante_embedding = face_info['embedding'] | |
| self.debug_img_list.append( | |
| image[ | |
| int(face_info['bbox'][1]) : int(face_info['bbox'][3]), | |
| int(face_info['bbox'][0]) : int(face_info['bbox'][2]), | |
| ] | |
| ) | |
| else: | |
| id_ante_embedding = None | |
| # using facexlib to detect and align face | |
| self.face_helper.read_image(image_bgr) | |
| self.face_helper.get_face_landmarks_5(only_center_face=True) | |
| self.face_helper.align_warp_face() | |
| if len(self.face_helper.cropped_faces) == 0: | |
| raise RuntimeError('facexlib align face fail') | |
| align_face = self.face_helper.cropped_faces[0] | |
| # incase insightface didn't detect face | |
| if id_ante_embedding is None: | |
| print('fail to detect face using insightface, extract embedding on align face') | |
| # self.handler_ante.session.set_providers(['CUDAExecutionProvider']) | |
| id_ante_embedding = self.handler_ante.get_feat(align_face) | |
| id_ante_embedding = torch.from_numpy(id_ante_embedding).to(self.device, self.weight_dtype) | |
| if id_ante_embedding.ndim == 1: | |
| id_ante_embedding = id_ante_embedding.unsqueeze(0) | |
| # parsing | |
| input = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0 | |
| input = input.to(self.device) | |
| parsing_out = self.face_helper.face_parse(normalize(input, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0] | |
| parsing_out = parsing_out.argmax(dim=1, keepdim=True) | |
| bg_label = [0, 16, 18, 7, 8, 9, 14, 15] | |
| bg = sum(parsing_out == i for i in bg_label).bool() | |
| white_image = torch.ones_like(input) | |
| # only keep the face features | |
| face_features_image = torch.where(bg, white_image, self.to_gray(input)) | |
| self.debug_img_list.append(tensor2img(face_features_image, rgb2bgr=False)) | |
| # transform img before sending to eva-clip-vit | |
| face_features_image = resize(face_features_image, self.clip_vision_model.image_size, InterpolationMode.BICUBIC) | |
| face_features_image = normalize(face_features_image, self.eva_transform_mean, self.eva_transform_std) | |
| id_cond_vit, id_vit_hidden = self.clip_vision_model( | |
| face_features_image.to(self.weight_dtype), return_all_features=False, return_hidden=True, shuffle=False | |
| ) | |
| id_cond_vit_norm = torch.norm(id_cond_vit, 2, 1, True) | |
| id_cond_vit = torch.div(id_cond_vit, id_cond_vit_norm) | |
| id_cond = torch.cat([id_ante_embedding, id_cond_vit], dim=-1) | |
| id_embedding = self.pulid_encoder(id_cond, id_vit_hidden) | |
| if not cal_uncond: | |
| return id_embedding, None | |
| id_uncond = torch.zeros_like(id_cond) | |
| id_vit_hidden_uncond = [] | |
| for layer_idx in range(0, len(id_vit_hidden)): | |
| id_vit_hidden_uncond.append(torch.zeros_like(id_vit_hidden[layer_idx])) | |
| uncond_id_embedding = self.pulid_encoder(id_uncond, id_vit_hidden_uncond) | |
| return id_embedding, uncond_id_embedding | |