Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import torch.nn as nn | |
| class IDEncoder(nn.Module): | |
| def __init__(self, width=1280, context_dim=2048, num_token=5): | |
| super().__init__() | |
| self.num_token = num_token | |
| self.context_dim = context_dim | |
| h1 = min((context_dim * num_token) // 4, 1024) | |
| h2 = min((context_dim * num_token) // 2, 1024) | |
| self.body = nn.Sequential( | |
| nn.Linear(width, h1), | |
| nn.LayerNorm(h1), | |
| nn.LeakyReLU(), | |
| nn.Linear(h1, h2), | |
| nn.LayerNorm(h2), | |
| nn.LeakyReLU(), | |
| nn.Linear(h2, context_dim * num_token), | |
| ) | |
| for i in range(5): | |
| setattr( | |
| self, | |
| f'mapping_{i}', | |
| nn.Sequential( | |
| nn.Linear(1024, 1024), | |
| nn.LayerNorm(1024), | |
| nn.LeakyReLU(), | |
| nn.Linear(1024, 1024), | |
| nn.LayerNorm(1024), | |
| nn.LeakyReLU(), | |
| nn.Linear(1024, context_dim), | |
| ), | |
| ) | |
| setattr( | |
| self, | |
| f'mapping_patch_{i}', | |
| nn.Sequential( | |
| nn.Linear(1024, 1024), | |
| nn.LayerNorm(1024), | |
| nn.LeakyReLU(), | |
| nn.Linear(1024, 1024), | |
| nn.LayerNorm(1024), | |
| nn.LeakyReLU(), | |
| nn.Linear(1024, context_dim), | |
| ), | |
| ) | |
| def forward(self, x, y): | |
| # x shape [N, C] | |
| x = self.body(x) | |
| x = x.reshape(-1, self.num_token, self.context_dim) | |
| hidden_states = () | |
| for i, emb in enumerate(y): | |
| hidden_state = getattr(self, f'mapping_{i}')(emb[:, :1]) + getattr(self, f'mapping_patch_{i}')( | |
| emb[:, 1:] | |
| ).mean(dim=1, keepdim=True) | |
| hidden_states += (hidden_state,) | |
| hidden_states = torch.cat(hidden_states, dim=1) | |
| return torch.cat([x, hidden_states], dim=1) | |