Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,7 +2,7 @@ import torch
|
|
| 2 |
import numpy as np
|
| 3 |
from torch.nn.utils.rnn import pad_sequence
|
| 4 |
import gradio as gr
|
| 5 |
-
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
| 6 |
from sentence_transformers import SentenceTransformer
|
| 7 |
|
| 8 |
# Load the model and tokenizer
|
|
@@ -28,6 +28,7 @@ def get_target_style_embeddings(target_texts_batch):
|
|
| 28 |
return mean_embeddings.float().cpu().numpy()
|
| 29 |
|
| 30 |
def get_luar_embeddings(texts_batch):
|
|
|
|
| 31 |
episodes = texts_batch
|
| 32 |
tokenized_episodes = [luar_tokenizer(episode, max_length=512, padding="longest", truncation=True, return_tensors="pt").to(device) for episode in episodes]
|
| 33 |
episode_lengths = [t["attention_mask"].shape[0] for t in tokenized_episodes]
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
from torch.nn.utils.rnn import pad_sequence
|
| 4 |
import gradio as gr
|
| 5 |
+
from transformers import AutoModel, AutoModelForSeq2SeqLM, AutoTokenizer
|
| 6 |
from sentence_transformers import SentenceTransformer
|
| 7 |
|
| 8 |
# Load the model and tokenizer
|
|
|
|
| 28 |
return mean_embeddings.float().cpu().numpy()
|
| 29 |
|
| 30 |
def get_luar_embeddings(texts_batch):
|
| 31 |
+
assert set([len(texts) for texts in texts_batch]) == 1
|
| 32 |
episodes = texts_batch
|
| 33 |
tokenized_episodes = [luar_tokenizer(episode, max_length=512, padding="longest", truncation=True, return_tensors="pt").to(device) for episode in episodes]
|
| 34 |
episode_lengths = [t["attention_mask"].shape[0] for t in tokenized_episodes]
|