Spaces:
Runtime error
Runtime error
Commit
ยท
979c542
1
Parent(s):
30f49a1
Add args to model
Browse filesUser can select args for inference.
Inference logic moved to qwen2_inference.py
- main.py +0 -7
- qwen2_inference.py +58 -0
- sketch2diagram.py +16 -12
main.py
CHANGED
|
@@ -1,11 +1,4 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
from transformers import pipeline
|
| 3 |
-
|
| 4 |
-
@st.cache_resource
|
| 5 |
-
def get_model():
|
| 6 |
-
# Load the model here
|
| 7 |
-
model = pipeline("image-to-text", model="itsumi-st/imgtikz_qwen2vl")
|
| 8 |
-
return model
|
| 9 |
|
| 10 |
st.logo("NLP_Group_logo.svg", size="large")
|
| 11 |
main_page = st.Page("main_page.py", title="Main Page", icon="๐ ")
|
|
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
st.logo("NLP_Group_logo.svg", size="large")
|
| 4 |
main_page = st.Page("main_page.py", title="Main Page", icon="๐ ")
|
qwen2_inference.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
# Inference steps taken from https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct
|
| 8 |
+
|
| 9 |
+
@st.cache_resource
|
| 10 |
+
def get_model(model_path):
|
| 11 |
+
try:
|
| 12 |
+
with st.spinner(f"Loading model {model_path}"):
|
| 13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 14 |
+
# Load the model here
|
| 15 |
+
model_import = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 16 |
+
model_path, torch_dtype="auto", device_map=device
|
| 17 |
+
)
|
| 18 |
+
processor_import = AutoProcessor.from_pretrained(model_path)
|
| 19 |
+
|
| 20 |
+
return model_import, processor_import
|
| 21 |
+
except Exception as e:
|
| 22 |
+
st.error(f"Error loading model: {e}")
|
| 23 |
+
return None, None
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def run_inference(input_file, model_path, args):
|
| 27 |
+
model, processor = get_model(model_path)
|
| 28 |
+
if model is None or processor is None:
|
| 29 |
+
return "Error loading model."
|
| 30 |
+
image = Image.open(input_file)
|
| 31 |
+
conversation = [
|
| 32 |
+
{
|
| 33 |
+
"role": "user",
|
| 34 |
+
"content": [
|
| 35 |
+
{"type": "image"},
|
| 36 |
+
{"type": "text", "text": "Please generate TikZ code to draw the diagram of the given image."}
|
| 37 |
+
],
|
| 38 |
+
}
|
| 39 |
+
]
|
| 40 |
+
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
| 41 |
+
inputs = processor(image, text_prompt, return_tensors="pt").to("cuda")
|
| 42 |
+
|
| 43 |
+
output_ids = model.generate(**inputs,
|
| 44 |
+
max_new_tokens=args.max_length,
|
| 45 |
+
do_sample=True,
|
| 46 |
+
top_p=args.top_p,
|
| 47 |
+
top_k=args.top_k,
|
| 48 |
+
num_return_sequences=1,
|
| 49 |
+
temperature=args.temperature
|
| 50 |
+
)
|
| 51 |
+
generated_ids = [
|
| 52 |
+
output_ids[len(input_ids):]
|
| 53 |
+
for input_ids, output_ids in zip(inputs.input_ids, output_ids)
|
| 54 |
+
]
|
| 55 |
+
output_text = processor.batch_decode(
|
| 56 |
+
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
|
| 57 |
+
)
|
| 58 |
+
return output_text
|
sketch2diagram.py
CHANGED
|
@@ -1,12 +1,19 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
from PIL import Image
|
| 3 |
|
| 4 |
-
from
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# Sidebar Setup
|
| 7 |
st.sidebar.title("Model Configuration")
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# Introduction Section
|
| 12 |
st.title("Sketch2Diagram")
|
|
@@ -14,7 +21,7 @@ st.title("Sketch2Diagram")
|
|
| 14 |
st.write("This is a runnable demo of ImgTikZ model introduced in the Sketch2Diagram paper.")
|
| 15 |
st.write("Please refer to the [original paper](https://openreview.net/pdf?id=KvaDHPhhir) for more details.")
|
| 16 |
st.write("The model is trained to convert sketches into TikZ code, which can be used to generate vectorized diagrams.")
|
| 17 |
-
|
| 18 |
|
| 19 |
# User Input Section
|
| 20 |
st.subheader("Upload your sketch")
|
|
@@ -35,12 +42,9 @@ if input_file is not None:
|
|
| 35 |
st.image(input_file, caption="Uploaded Sketch")
|
| 36 |
generate_command = st.button("Generate TikZ Code")
|
| 37 |
|
|
|
|
| 38 |
if generate_command:
|
| 39 |
-
model = get_model()
|
| 40 |
-
image = Image.open(input_file)
|
| 41 |
with st.spinner("Generating TikZ code..."):
|
| 42 |
-
output =
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
st.subheader("Generated TikZ Code")
|
| 46 |
-
st.code(tikz_code, language='latex')
|
|
|
|
| 1 |
import streamlit as st
|
|
|
|
| 2 |
|
| 3 |
+
from qwen2_inference import run_inference
|
| 4 |
+
|
| 5 |
+
args = {}
|
| 6 |
|
| 7 |
# Sidebar Setup
|
| 8 |
st.sidebar.title("Model Configuration")
|
| 9 |
+
model_name = st.sidebar.selectbox("Model Name", ['Itsumi-st/Imgtikz_Qwen2vl', 'Qwen/Qwen2-VL-7B-Instruct'])
|
| 10 |
+
args['inference_strat'] = st.sidebar.selectbox("Inference Strategy", ["Iterative", "Multi-candidate"],
|
| 11 |
+
help="Choose the inference strategy for the model. Iterative generates one candidate at a time until an output compiles, while Multi-candidate generates multiple candidates in parallel.")
|
| 12 |
+
args['max_length'] = st.sidebar.slider("Max Length", 1, 5096, 2048, help="Maximum length of the generated output. The model will generate text up to this length.")
|
| 13 |
+
args['seed'] = st.sidebar.number_input("Seed", min_value=0, value=42, step=1)
|
| 14 |
+
args['top_p'] = st.sidebar.slider("Top P", 0.0, 1.0, 1.0, step=0.01, help="Top P sampling parameter. The model will sample from the top P percentage of the probability distribution.")
|
| 15 |
+
args['temperature'] = st.sidebar.slider("Top P", 0.0, 1.0, 0.6, step=0.01, help="Temperature parameter for sampling. Higher values result in more random outputs.")
|
| 16 |
+
args['top_k'] = st.sidebar.slider("Top K", 0, 100, 50, step=1, help="Top K sampling parameter. The model will sample from the top K tokens with the highest probabilities.")
|
| 17 |
|
| 18 |
# Introduction Section
|
| 19 |
st.title("Sketch2Diagram")
|
|
|
|
| 21 |
st.write("This is a runnable demo of ImgTikZ model introduced in the Sketch2Diagram paper.")
|
| 22 |
st.write("Please refer to the [original paper](https://openreview.net/pdf?id=KvaDHPhhir) for more details.")
|
| 23 |
st.write("The model is trained to convert sketches into TikZ code, which can be used to generate vectorized diagrams.")
|
| 24 |
+
|
| 25 |
|
| 26 |
# User Input Section
|
| 27 |
st.subheader("Upload your sketch")
|
|
|
|
| 42 |
st.image(input_file, caption="Uploaded Sketch")
|
| 43 |
generate_command = st.button("Generate TikZ Code")
|
| 44 |
|
| 45 |
+
# Run model inference
|
| 46 |
if generate_command:
|
|
|
|
|
|
|
| 47 |
with st.spinner("Generating TikZ code..."):
|
| 48 |
+
output = run_inference(input_file, model_name, args)
|
| 49 |
+
st.success("TikZ code generated successfully!")
|
| 50 |
+
st.code(output, language='latex')
|
|
|
|
|
|