File size: 13,953 Bytes
20a7b41
 
 
 
 
 
 
 
 
e0c7c62
20a7b41
 
8f46541
e0c7c62
20a7b41
 
 
 
 
 
e0c7c62
20a7b41
 
e0c7c62
 
20a7b41
 
e0c7c62
 
 
 
 
20a7b41
e0c7c62
 
20a7b41
 
e0c7c62
20a7b41
 
e0c7c62
20a7b41
 
 
e0c7c62
 
 
 
20a7b41
 
 
 
e0c7c62
 
20a7b41
e0c7c62
 
 
20a7b41
e0c7c62
 
 
 
 
 
 
 
20a7b41
e0c7c62
20a7b41
 
 
e0c7c62
20a7b41
 
e0c7c62
 
20a7b41
e0c7c62
20a7b41
 
 
 
 
 
 
 
 
 
 
 
 
 
e0c7c62
20a7b41
 
 
 
 
 
 
 
 
 
 
 
 
e0c7c62
20a7b41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0c7c62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20a7b41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0c7c62
20a7b41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0c7c62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20a7b41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0c7c62
 
20a7b41
 
 
e0c7c62
20a7b41
 
 
 
 
 
 
 
 
 
e0c7c62
 
20a7b41
e0c7c62
20a7b41
 
 
 
e0c7c62
20a7b41
 
 
 
 
 
 
 
e0c7c62
20a7b41
 
 
 
e0c7c62
20a7b41
 
 
 
 
 
 
 
e0c7c62
20a7b41
 
 
 
 
 
 
e0c7c62
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
from flask import Flask, request, jsonify, render_template_string
import os
import requests
import json
import logging
from typing import Dict, Any, List
import time

app = Flask(__name__)
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# Configuration
OLLAMA_API_URL = os.getenv('OLLAMA_API_URL', 'https://huggingface.co/spaces/tommytracx/ollama-api')
DEFAULT_MODEL = os.getenv('DEFAULT_MODEL', 'llama2,llama2:13b,llama2:70b,codellama,neural-chat,gemma-3-270m').split(',')
MAX_TOKENS = int(os.getenv('MAX_TOKENS', '2048'))
TEMPERATURE = float(os.getenv('TEMPERATURE', '0.7'))

class OllamaClient:
    def __init__(self, api_url: str):
        self.api_url = api_url.rstrip('/')
        self.available_models = DEFAULT_MODEL  # Initialize with default models
        self.refresh_models()
    
    def refresh_models(self) -> None:
        """Refresh the list of available models from the API, falling back to defaults on failure."""
        try:
            response = requests.get(f"{self.api_url}/api/models", timeout=10)
            response.raise_for_status()
            data = response.json()
            if data.get('status') == 'success' and isinstance(data.get('models'), list):
                self.available_models = data['models']
                logging.info(f"Successfully fetched models: {self.available_models}")
            else:
                logging.warning(f"Invalid response format from API: {data}")
                self.available_models = DEFAULT_MODEL
        except Exception as e:
            logging.error(f"Error refreshing models: {e}")
            self.available_models = DEFAULT_MODEL
    
    def list_models(self) -> List[str]:
        """Return the list of available models."""
        return self.available_models
    
    def generate(self, model_name: str, prompt: str, **kwargs) -> Dict[str, Any]:
        """Generate text using a model."""
        if model_name not in self.available_models:
            return {"status": "error", "message": f"Model {model_name} not available"}
        
        try:
            payload = {
                "model": model_name,
                "prompt": prompt,
                "stream": False,
                **kwargs
            }
            response = requests.post(f"{self.api_url}/api/generate", json=payload, timeout=120)
            response.raise_for_status()
            data = response.json()
            
            if data.get('status') == 'success':
                return {
                    "status": "success",
                    "response": data.get('response', ''),
                    "model": model_name,
                    "usage": data.get('usage', {})
                }
            return {"status": "error", "message": data.get('message', 'Unknown error')}
        except Exception as e:
            logging.error(f"Error generating response: {e}")
            return {"status": "error", "message": str(e)}
    
    def health_check(self) -> Dict[str, Any]:
        """Check the health of the Ollama API."""
        try:
            response = requests.get(f"{self.api_url}/health", timeout=10)
            response.raise_for_status()
            return response.json()
        except Exception as e:
            logging.error(f"Health check failed: {e}")
            return {"status": "unhealthy", "error": str(e)}

# Initialize Ollama client
ollama_client = OllamaClient(OLLAMA_API_URL)

# HTML template for the chat interface
HTML_TEMPLATE = '''
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>OpenWebUI - Ollama Chat</title>
    <style>
        /* [Previous CSS unchanged] */
    </style>
</head>
<body>
    <div class="container">
        <div class="header">
            <h1>🤖 OpenWebUI</h1>
            <p>Chat with your local Ollama models through Hugging Face Spaces</p>
        </div>
        
        <div class="controls">
            <div class="control-group">
                <label for="model-select">Model:</label>
                <select id="model-select">
                    <option value="">Select a model...</option>
                </select>
            </div>
            <div class="control-group">
                <label for="temperature">Temperature:</label>
                <input type="range" id="temperature" min="0" max="2" step="0.1" value="0.7">
                <span id="temp-value">0.7</span>
            </div>
            <div class="control-group">
                <label for="max-tokens">Max Tokens:</label>
                <input type="number" id="max-tokens" min="1" max="4096" value="2048">
            </div>
        </div>
        
        <div class="chat-container" id="chat-container">
            <div class="message assistant">
                <div class="message-avatar">AI</div>
                <div class="message-content">
                    Hello! I'm your AI assistant powered by Ollama. How can I help you today?
                </div>
            </div>
        </div>
        
        <div class="typing-indicator" id="typing-indicator">
            AI is thinking...
        </div>
        
        <div class="input-container">
            <form class="input-form" id="chat-form">
                <textarea 
                    class="input-field" 
                    id="message-input" 
                    placeholder="Type your message here..."
                    rows="1"
                ></textarea>
                <button type="submit" class="send-button" id="send-button">
                    Send
                </button>
            </form>
        </div>
        
        <div class="status" id="status"></div>
    </div>

    <script>
        let conversationHistory = [];
        
        document.addEventListener('DOMContentLoaded', function() {
            loadModels();
            setupEventListeners();
            autoResizeTextarea();
        });
        
        async function loadModels() {
            const modelSelect = document.getElementById('model-select');
            modelSelect.innerHTML = '<option value="">Loading models...</option>';
            
            try {
                const response = await fetch('/api/models');
                const data = await response.json();
                
                modelSelect.innerHTML = '<option value="">Select a model...</option>';
                
                if (data.status === 'success' && data.models.length > 0) {
                    data.models.forEach(model => {
                        const option = document.createElement('option');
                        option.value = model;
                        option.textContent = model;
                        if (model === '{{ default_model[0] }}') {
                            option.selected = true;
                        }
                        modelSelect.appendChild(option);
                    });
                    showStatus('Models loaded successfully', 'success');
                } else {
                    modelSelect.innerHTML = '<option value="">No models available</option>';
                    showStatus('No models available from API', 'error');
                }
            } catch (error) {
                console.error('Error loading models:', error);
                modelSelect.innerHTML = '<option value="">No models available</option>';
                showStatus('Failed to load models: ' + error.message, 'error');
            }
        }
        
        function setupEventListeners() {
            document.getElementById('chat-form').addEventListener('submit', handleSubmit);
            document.getElementById('temperature').addEventListener('input', function() {
                document.getElementById('temp-value').textContent = this.value;
            });
            document.getElementById('message-input').addEventListener('input', autoResizeTextarea);
        }
        
        function autoResizeTextarea() {
            const textarea = document.getElementById('message-input');
            textarea.style.height = 'auto';
            textarea.style.height = Math.min(textarea.scrollHeight, 120) + 'px';
        }
        
        async function handleSubmit(e) {
            e.preventDefault();
            
            const messageInput = document.getElementById('message-input');
            const message = messageInput.value.trim();
            
            if (!message) return;
            
            const model = document.getElementById('model-select').value;
            const temperature = parseFloat(document.getElementById('temperature').value);
            const maxTokens = parseInt(document.getElementById('max-tokens').value);
            
            if (!model) {
                showStatus('Please select a model', 'error');
                return;
            }
            
            addMessage(message, 'user');
            messageInput.value = '';
            autoResizeTextarea();
            showTypingIndicator(true);
            
            try {
                const response = await fetch('/api/chat', {
                    method: 'POST',
                    headers: { 'Content-Type': 'application/json' },
                    body: JSON.stringify({ model, message, temperature, max_tokens: maxTokens })
                });
                const data = await response.json();
                
                showTypingIndicator(false);
                
                if (data.status === 'success') {
                    addMessage(data.response, 'assistant');
                    showStatus(`Response generated using ${model}`, 'success');
                } else {
                    addMessage('Sorry, I encountered an error while processing your request.', 'assistant');
                    showStatus(`Error: ${data.message}`, 'error');
                }
            } catch (error) {
                showTypingIndicator(false);
                addMessage('Sorry, I encountered a network error.', 'assistant');
                showStatus('Network error: ' + error.message, 'error');
            }
        }
        
        function addMessage(content, sender) {
            const chatContainer = document.getElementById('chat-container');
            const messageDiv = document.createElement('div');
            messageDiv.className = `message ${sender}`;
            
            const avatar = document.createElement('div');
            avatar.className = 'message-avatar';
            avatar.textContent = sender === 'user' ? 'U' : 'AI';
            
            const messageContent = document.createElement('div');
            messageContent.className = 'message-content';
            messageContent.textContent = content;
            
            messageDiv.appendChild(avatar);
            messageDiv.appendChild(messageContent);
            chatContainer.appendChild(messageDiv);
            chatContainer.scrollTop = chatContainer.scrollHeight;
            
            conversationHistory.push({ role: sender, content: content });
        }
        
        function showTypingIndicator(show) {
            const indicator = document.getElementById('typing-indicator');
            indicator.style.display = show ? 'block' : 'none';
            if (show) {
                const chatContainer = document.getElementById('chat-container');
                chatContainer.scrollTop = chatContainer.scrollHeight;
            }
        }
        
        function showStatus(message, type = '') {
            const statusDiv = document.getElementById('status');
            statusDiv.textContent = message;
            statusDiv.className = `status ${type}`;
            setTimeout(() => {
                statusDiv.textContent = '';
                statusDiv.className = 'status';
            }, 5000);
        }
    </script>
</body>
</html>
'''

@app.route('/')
def home():
    """Main chat interface."""
    return render_template_string(HTML_TEMPLATE, ollama_api_url=OLLAMA_API_URL, default_model=DEFAULT_MODEL)

@app.route('/api/chat', methods=['POST'])
def chat():
    """Chat API endpoint."""
    try:
        data = request.get_json()
        if not data or 'message' not in data or 'model' not in data:
            return jsonify({"status": "error", "message": "Message and model are required"}), 400
        
        message = data['message']
        model = data['model']
        temperature = data.get('temperature', TEMPERATURE)
        max_tokens = data.get('max_tokens', MAX_TOKENS)
        
        result = ollama_client.generate(model, message, temperature=temperature, max_tokens=max_tokens)
        return jsonify(result), 200 if result["status"] == "success" else 500
    except Exception as e:
        logging.error(f"Chat endpoint error: {e}")
        return jsonify({"status": "error", "message": str(e)}), 500

@app.route('/api/models', methods=['GET'])
def get_models():
    """Get available models."""
    try:
        models = ollama_client.list_models()
        return jsonify({
            "status": "success",
            "models": models,
            "count": len(models)
        })
    except Exception as e:
        logging.error(f"Models endpoint error: {e}")
        return jsonify({"status": "error", "message": str(e)}), 500

@app.route('/health', methods=['GET'])
def health_check():
    """Health check endpoint."""
    try:
        ollama_health = ollama_client.health_check()
        return jsonify({
            "status": "healthy",
            "ollama_api": ollama_health,
            "timestamp": time.time()
        })
    except Exception as e:
        logging.error(f"Health check endpoint error: {e}")
        return jsonify({
            "status": "unhealthy",
            "error": str(e),
            "timestamp": time.time()
        }), 500

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=7860, debug=False)