Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| from transformers import pipeline | |
| import numpy as np | |
| import cv2 | |
| import insightface | |
| from insightface.app import FaceAnalysis | |
| from PIL import Image, ImageDraw | |
| # Initialize face detection | |
| #app = FaceAnalysis(providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) | |
| app = FaceAnalysis(providers=['CUDAExecutionProvider']) | |
| app.prepare(ctx_id=0, det_size=(640, 640)) | |
| # Initialize segmentation pipeline | |
| segmenter = pipeline(model="mattmdjaga/segformer_b2_clothes", device="cuda") | |
| def remove_face(img, mask): | |
| # Convert image to numpy array | |
| img_arr = np.asarray(img) | |
| # Run face detection | |
| faces = app.get(img_arr) | |
| # Get the first face | |
| faces = faces[0]['bbox'] | |
| # Width and height of face | |
| w = faces[2] - faces[0] | |
| h = faces[3] - faces[1] | |
| # Make face locations bigger | |
| faces[0] = faces[0] - (w*0.5) # x left | |
| faces[2] = faces[2] + (w*0.5) # x right | |
| faces[1] = faces[1] - (h*0.5) # y top | |
| faces[3] = faces[3] + (h*0.2) # y bottom | |
| # Convert to [(x_left, y_top), (x_right, y_bottom)] | |
| face_locations = [(faces[0], faces[1]), (faces[2], faces[3])] | |
| # Draw black rect onto mask | |
| img1 = ImageDraw.Draw(mask) | |
| img1.rectangle(face_locations, fill=0) | |
| return mask | |
| def segment_body(original_img, face=True): | |
| # Make a copy | |
| img = original_img.copy() | |
| # Segment image | |
| segments = segmenter(img) | |
| # Create list of masks | |
| segment_include = ["Hat", "Hair", "Sunglasses", "Upper-clothes", "Skirt", "Pants", "Dress", "Belt", "Left-shoe", "Right-shoe", "Face", "Left-leg", "Right-leg", "Left-arm", "Right-arm", "Bag","Scarf"] | |
| mask_list = [] | |
| for s in segments: | |
| if(s['label'] in segment_include): | |
| mask_list.append(s['mask']) | |
| # Paste all masks on top of eachother | |
| final_mask = np.array(mask_list[0]) | |
| for mask in mask_list: | |
| current_mask = np.array(mask) | |
| final_mask = final_mask + current_mask | |
| # Convert final mask from np array to PIL image | |
| final_mask = Image.fromarray(final_mask) | |
| # Remove face | |
| if(face==False): | |
| final_mask = remove_face(img.convert('RGB'), final_mask) | |
| # Apply mask to original image | |
| img.putalpha(final_mask) | |
| return img, final_mask | |