Spaces:
Runtime error
Runtime error
Commit
·
284c1ac
1
Parent(s):
103c053
libs entropy and read files
Browse files- app.py +1 -0
- lib/pipes.py +102 -0
app.py
CHANGED
|
@@ -111,6 +111,7 @@ with gr.Blocks(title="Sophia, Torah Codes",css=css,js=js) as app:
|
|
| 111 |
retry_btn=None,
|
| 112 |
undo_btn="Undo",
|
| 113 |
clear_btn="Clear",
|
|
|
|
| 114 |
)
|
| 115 |
|
| 116 |
#with gr.Tab("Chat"):
|
|
|
|
| 111 |
retry_btn=None,
|
| 112 |
undo_btn="Undo",
|
| 113 |
clear_btn="Clear",
|
| 114 |
+
examples=["I want you to interpret a dream where I travel to space and see the earth in small size, then a fireball comes for me and I teleport to another planet full of fruits, trees and forests, there I meet a witch who makes me drink a potion and then I wake up"]
|
| 115 |
)
|
| 116 |
|
| 117 |
#with gr.Tab("Chat"):
|
lib/pipes.py
ADDED
|
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
| 2 |
+
from diffusers import DiffusionPipeline
|
| 3 |
+
from transformers import AutoModelForSeq2SeqLM
|
| 4 |
+
from samplings import top_p_sampling, temperature_sampling
|
| 5 |
+
import torch
|
| 6 |
+
|
| 7 |
+
class AIAssistant:
|
| 8 |
+
def __init__(self):
|
| 9 |
+
pass
|
| 10 |
+
|
| 11 |
+
def entity_pos_tagger(self, example):
|
| 12 |
+
tokenizer = AutoTokenizer.from_pretrained("Davlan/bert-base-multilingual-cased-ner-hrl")
|
| 13 |
+
model = AutoModelForTokenClassification.from_pretrained("Davlan/bert-base-multilingual-cased-ner-hrl")
|
| 14 |
+
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
|
| 15 |
+
ner_results = nlp(example)
|
| 16 |
+
return ner_results
|
| 17 |
+
|
| 18 |
+
def text_to_image_generation(self, prompt, n_steps=40, high_noise_frac=0.8):
|
| 19 |
+
base = DiffusionPipeline.from_pretrained(
|
| 20 |
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
|
| 21 |
+
)
|
| 22 |
+
base.to("cuda")
|
| 23 |
+
refiner = DiffusionPipeline.from_pretrained(
|
| 24 |
+
"stabilityai/stable-diffusion-xl-refiner-1.0",
|
| 25 |
+
text_encoder_2=base.text_encoder_2,
|
| 26 |
+
vae=base.vae,
|
| 27 |
+
torch_dtype=torch.float16,
|
| 28 |
+
use_safetensors=True,
|
| 29 |
+
variant="fp16",
|
| 30 |
+
)
|
| 31 |
+
refiner.to("cuda")
|
| 32 |
+
|
| 33 |
+
image = base(
|
| 34 |
+
prompt=prompt,
|
| 35 |
+
num_inference_steps=n_steps,
|
| 36 |
+
denoising_end=high_noise_frac,
|
| 37 |
+
output_type="latent",
|
| 38 |
+
).images
|
| 39 |
+
image = refiner(
|
| 40 |
+
prompt=prompt,
|
| 41 |
+
num_inference_steps=n_steps,
|
| 42 |
+
denoising_start=high_noise_frac,
|
| 43 |
+
image=image,
|
| 44 |
+
).images[0]
|
| 45 |
+
return image
|
| 46 |
+
|
| 47 |
+
def grammatical_pos_tagger(self, text):
|
| 48 |
+
nlp_pos = pipeline(
|
| 49 |
+
"ner",
|
| 50 |
+
model="mrm8488/bert-spanish-cased-finetuned-pos",
|
| 51 |
+
tokenizer=(
|
| 52 |
+
'mrm8488/bert-spanish-cased-finetuned-pos',
|
| 53 |
+
{"use_fast": False}
|
| 54 |
+
))
|
| 55 |
+
return nlp_pos(text)
|
| 56 |
+
|
| 57 |
+
def text_to_music(self, text, max_length=1024, top_p=0.9, temperature=1.0):
|
| 58 |
+
tokenizer = AutoTokenizer.from_pretrained('sander-wood/text-to-music')
|
| 59 |
+
model = AutoModelForSeq2SeqLM.from_pretrained('sander-wood/text-to-music')
|
| 60 |
+
|
| 61 |
+
input_ids = tokenizer(text,
|
| 62 |
+
return_tensors='pt',
|
| 63 |
+
truncation=True,
|
| 64 |
+
max_length=max_length)['input_ids']
|
| 65 |
+
|
| 66 |
+
decoder_start_token_id = model.config.decoder_start_token_id
|
| 67 |
+
eos_token_id = model.config.eos_token_id
|
| 68 |
+
|
| 69 |
+
decoder_input_ids = torch.tensor([[decoder_start_token_id]])
|
| 70 |
+
|
| 71 |
+
for t_idx in range(max_length):
|
| 72 |
+
outputs = model(input_ids=input_ids,
|
| 73 |
+
decoder_input_ids=decoder_input_ids)
|
| 74 |
+
probs = outputs.logits[0][-1]
|
| 75 |
+
probs = torch.nn.Softmax(dim=-1)(probs).detach().numpy()
|
| 76 |
+
sampled_id = temperature_sampling(probs=top_p_sampling(probs,
|
| 77 |
+
top_p=top_p,
|
| 78 |
+
return_probs=True),
|
| 79 |
+
temperature=temperature)
|
| 80 |
+
decoder_input_ids = torch.cat((decoder_input_ids, torch.tensor([[sampled_id]])), 1)
|
| 81 |
+
if sampled_id!=eos_token_id:
|
| 82 |
+
continue
|
| 83 |
+
else:
|
| 84 |
+
tune = "X:1\n"
|
| 85 |
+
tune += tokenizer.decode(decoder_input_ids[0], skip_special_tokens=True)
|
| 86 |
+
return tune
|
| 87 |
+
break
|
| 88 |
+
|
| 89 |
+
# Ejemplo de uso
|
| 90 |
+
assistant = AIAssistant()
|
| 91 |
+
ner_results = assistant.entity_pos_tagger("Nader Jokhadar had given Syria the lead with a well-struck header in the seventh minute.")
|
| 92 |
+
print(ner_results)
|
| 93 |
+
|
| 94 |
+
image = assistant.text_to_image_generation("A majestic lion jumping from a big stone at night")
|
| 95 |
+
print(image)
|
| 96 |
+
|
| 97 |
+
pos_tags = assistant.grammatical_pos_tagger('Mis amigos están pensando en viajar a Londres este verano')
|
| 98 |
+
print(pos_tags)
|
| 99 |
+
|
| 100 |
+
tune = assistant.text_to_music("This is a traditional Irish dance music.")
|
| 101 |
+
print(tune)
|
| 102 |
+
|