Spaces:
Runtime error
Runtime error
Commit
·
b3a2703
1
Parent(s):
4669527
model manager
Browse files- lib/models.py +98 -0
lib/models.py
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pipes
|
| 2 |
+
|
| 3 |
+
class ModelManager:
|
| 4 |
+
def __init__(self):
|
| 5 |
+
self.models = {} # Un diccionario para almacenar los modelos disponibles
|
| 6 |
+
|
| 7 |
+
def list_models(self):
|
| 8 |
+
return list(self.models.keys())
|
| 9 |
+
|
| 10 |
+
def add_model(self, pipe_func, model_name, args):
|
| 11 |
+
self.models[model_name] = {"pipeline": pipe_func, "args": args}
|
| 12 |
+
|
| 13 |
+
def load_transformers_model(self, model_name, args):
|
| 14 |
+
if hasattr(pipes, model_name):
|
| 15 |
+
pipe_func = getattr(pipes, model_name)
|
| 16 |
+
self.add_model(pipe_func, model_name, args)
|
| 17 |
+
else:
|
| 18 |
+
print(f"Error: {model_name} no está definido en el módulo pipes.")
|
| 19 |
+
|
| 20 |
+
def train_transformers_model(self, model_name, train_dataset, eval_dataset, training_args):
|
| 21 |
+
if model_name not in self.models:
|
| 22 |
+
print(f"Error: {model_name} no está en la lista de modelos disponibles.")
|
| 23 |
+
return
|
| 24 |
+
|
| 25 |
+
pipeline = self.models[model_name]["pipeline"]
|
| 26 |
+
pipeline.train(train_dataset=train_dataset, eval_dataset=eval_dataset, training_args=training_args)
|
| 27 |
+
|
| 28 |
+
def test_model(self, model_name, test_dataset):
|
| 29 |
+
if model_name not in self.models:
|
| 30 |
+
print(f"Error: {model_name} no está en la lista de modelos disponibles.")
|
| 31 |
+
return
|
| 32 |
+
|
| 33 |
+
pipeline = self.models[model_name]["pipeline"]
|
| 34 |
+
return pipeline.test(test_dataset)
|
| 35 |
+
|
| 36 |
+
def remove_model(self, model_name):
|
| 37 |
+
if model_name in self.models:
|
| 38 |
+
del self.models[model_name]
|
| 39 |
+
else:
|
| 40 |
+
print(f"Error: {model_name} no está en la lista de modelos disponibles.")
|
| 41 |
+
|
| 42 |
+
def execute_model(self, model_name, *args, **kwargs):
|
| 43 |
+
if model_name not in self.models:
|
| 44 |
+
print(f"Error: {model_name} no está en la lista de modelos disponibles.")
|
| 45 |
+
return None
|
| 46 |
+
|
| 47 |
+
pipe_func = self.models[model_name]["pipeline"]
|
| 48 |
+
args = self.models[model_name]["args"]
|
| 49 |
+
return pipe_func(*args, **kwargs)
|
| 50 |
+
|
| 51 |
+
def choose_best_pipeline(self, prompt, task):
|
| 52 |
+
available_pipelines = self.models.keys()
|
| 53 |
+
best_pipeline = None
|
| 54 |
+
best_score = float('-inf')
|
| 55 |
+
|
| 56 |
+
for pipeline_name in available_pipelines:
|
| 57 |
+
pipeline = self.models[pipeline_name]["pipeline"]
|
| 58 |
+
score = self.evaluate_pipeline(pipeline, prompt, task)
|
| 59 |
+
if score > best_score:
|
| 60 |
+
best_score = score
|
| 61 |
+
best_pipeline = pipeline_name
|
| 62 |
+
|
| 63 |
+
return best_pipeline
|
| 64 |
+
|
| 65 |
+
def evaluate_pipeline(self, pipeline, prompt, task):
|
| 66 |
+
# Aquí puedes implementar la lógica para evaluar qué pipeline es mejor para la tarea específica
|
| 67 |
+
# En este ejemplo, utilizamos la métrica de exactitud para el análisis de sentimiento
|
| 68 |
+
if task == "sentiment_analysis":
|
| 69 |
+
# Supongamos que test_dataset contiene pares de (texto, etiqueta) para análisis de sentimiento
|
| 70 |
+
test_dataset = [("Texto de prueba 1", "positivo"), ("Texto de prueba 2", "negativo")]
|
| 71 |
+
correct_predictions = 0
|
| 72 |
+
total_predictions = len(test_dataset)
|
| 73 |
+
|
| 74 |
+
for text, label in test_dataset:
|
| 75 |
+
prediction = pipeline(text)
|
| 76 |
+
if prediction == label:
|
| 77 |
+
correct_predictions += 1
|
| 78 |
+
|
| 79 |
+
accuracy = correct_predictions / total_predictions
|
| 80 |
+
return accuracy
|
| 81 |
+
else:
|
| 82 |
+
# Implementa la lógica de evaluación para otras tareas aquí
|
| 83 |
+
return 0.5 # Por ahora, retornamos un valor de evaluación arbitrario
|
| 84 |
+
|
| 85 |
+
# Ejemplo de uso
|
| 86 |
+
if __name__ == "__main__":
|
| 87 |
+
manager = ModelManager()
|
| 88 |
+
|
| 89 |
+
# Añadir pipelines
|
| 90 |
+
manager.load_transformers_model("sentiment_tags", args={})
|
| 91 |
+
manager.load_transformers_model("entity_pos_tagger", args={})
|
| 92 |
+
|
| 93 |
+
# Decidir qué pipeline usar para el análisis de sentimiento
|
| 94 |
+
prompt = "Este es un texto de ejemplo para analizar el sentimiento."
|
| 95 |
+
task = "sentiment_analysis"
|
| 96 |
+
best_pipeline = manager.choose_best_pipeline(prompt, task)
|
| 97 |
+
print(f"La mejor pipa para {task} es: {best_pipeline}")
|
| 98 |
+
|