Spaces:
Runtime error
Runtime error
| from __future__ import annotations | |
| from dataclasses import dataclass, field | |
| from typing import Optional | |
| import transformers | |
| class ModelArguments: | |
| base_model: Optional[str] = field(default="gpt2", | |
| metadata={"help": "gpt2 or gpt_neox or llama"}) | |
| model_name_or_path: Optional[str] = field(default="rinna/japanese-gpt2-xsmall") | |
| version: Optional[str] = field(default="plain") | |
| freeze_backbone: bool = field(default=False) # LLMをFreezeするか | |
| tune_mm_mlp_adapter: bool = field(default=False) # 事前学習のときはmm_mlp_adapterだけ保存する. | |
| vision_tower: Optional[str] = field(default="openai/clip-vit-large-patch14-336") | |
| mm_vision_select_layer: Optional[int] = field(default=-2) # default to the last two layer | |
| pretrain_mm_mlp_adapter: Optional[str] = field(default=None) # fine-tuningのときには設定 | |
| mm_projector_type: Optional[str] = field(default='mlp2x_gelu') # 2層の線形層 | |
| mm_vision_select_feature: Optional[str] = field(default="patch") | |
| scales: Optional[list[float]] = field(default=None) | |
| class DataArguments: | |
| data_path: str = field(default="", | |
| metadata={"help": "Path to the training data."}) | |
| lazy_preprocess: bool = False | |
| is_multimodal: bool = False | |
| image_folder: Optional[str] = field(default="/home/toshi/work/llava_jp/input/LLaVA-CC3M-Pretrain-595K/images", | |
| metadata={"help": "Path to image data."}) | |
| image_aspect_ratio: str = 'square' | |
| image_size: Optional[int] = None | |
| class TrainingArguments(transformers.TrainingArguments): | |
| cache_dir: Optional[str] = field(default=None) | |
| optim: str = field(default="adamw_torch") | |
| model_max_length: int = field( | |
| default=1024, | |
| metadata={ | |
| "help": | |
| "Maximum sequence length. Sequences will be right padded (and possibly truncated)." | |
| }, | |
| ) | |
| double_quant: bool = field( | |
| default=True, | |
| metadata={"help": "Compress the quantization statistics through double quantization."} | |
| ) | |
| quant_type: str = field( | |
| default="nf4", | |
| metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."} | |
| ) | |
| bits: int = field( | |
| default=16, | |
| metadata={"help": "How many bits to use."} | |
| ) | |
| lora_enable: bool = False | |
| lora_r: int = 64 | |
| lora_alpha: int = 16 | |
| lora_dropout: float = 0.05 | |
| lora_weight_path: str = "" | |
| lora_bias: str = "none" | |
| mm_projector_lr: Optional[float] = None | |
| group_by_modality_length: bool = field(default=False) # dataset sampler option | |
| fp16: bool = field(default=False) | |
| bf16: bool = field(default=False) | |
| output_dir: str = field(default="./output_llava/checkpoints/llava-v1.5-japanese-gpt2-xsmall") | |
| num_train_epochs: int = field(default=1) | |
| per_device_train_batch_size: int = field(default=32) | |
| per_device_eval_batch_size: int = field(default=4) | |
| gradient_accumulation_steps: int = field(default=1) | |
| evaluation_strategy: str = field(default="no") | |
| save_strategy: str = field(default="steps") | |
| save_steps: int = field(default=24000) | |
| save_total_limit: int = field(default=1) | |
| learning_rate: float = field(default=1e-3) | |
| weight_decay: float = field(default=0.) | |
| warmup_ratio: float = field(default=0.03) | |
| logging_steps: int = field(default=1) | |
| model_max_length: int = field(default=1024) | |
| gradient_checkpointing: bool = field(default=True) | |
| dataloader_num_workers: int = field(default=16) | |
| lr_scheduler_type: str = field(default="cosine") | |
| seed: int = field(default=42) | |