Spaces:
Runtime error
Runtime error
| import copy | |
| import json | |
| import os | |
| from dataclasses import dataclass | |
| from typing import Dict | |
| from typing import Sequence | |
| import torch | |
| import transformers | |
| from PIL import Image | |
| from torch.utils.data import Dataset | |
| from llava import conversation as conversation_lib | |
| from llava.constants import DEFAULT_IMAGE_TOKEN, IGNORE_INDEX, IMAGE_TOKEN_INDEX | |
| from llava.train.arguments_dataclass import DataArguments | |
| def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None): | |
| prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')] | |
| def insert_separator(X, sep): | |
| return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1] | |
| input_ids = [] | |
| offset = 0 | |
| if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id: | |
| offset = 1 | |
| input_ids.append(prompt_chunks[0][0]) | |
| for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): | |
| input_ids.extend(x[offset:]) | |
| if return_tensors is not None: | |
| if return_tensors == 'pt': | |
| return torch.tensor(input_ids, dtype=torch.long) | |
| raise ValueError(f'Unsupported tensor type: {return_tensors}') | |
| return input_ids | |
| def preprocess_multimodal( | |
| sources: Sequence[str], | |
| data_args: DataArguments | |
| ) -> Dict: | |
| is_multimodal = data_args.is_multimodal | |
| if not is_multimodal: | |
| return sources | |
| for source in sources: | |
| for sentence in source: | |
| if DEFAULT_IMAGE_TOKEN in sentence['value']: | |
| sentence['value'] = sentence['value'].replace(DEFAULT_IMAGE_TOKEN, '').strip() | |
| sentence['value'] = DEFAULT_IMAGE_TOKEN + '\n' + sentence['value'] | |
| sentence['value'] = sentence['value'].strip() | |
| replace_token = DEFAULT_IMAGE_TOKEN | |
| sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, replace_token) | |
| return sources | |
| def preprocess_plain( | |
| sources: Sequence[str], | |
| tokenizer: transformers.PreTrainedTokenizer, | |
| ) -> Dict: | |
| # add end signal and concatenate together | |
| conversations = [] | |
| for source in sources: | |
| assert len(source) == 2 | |
| assert DEFAULT_IMAGE_TOKEN in source[0]['value'] | |
| source[0]['value'] = DEFAULT_IMAGE_TOKEN | |
| conversation = source[0]['value'] + source[1]['value'] + conversation_lib.default_conversation.sep | |
| conversations.append(conversation) | |
| # tokenize conversations | |
| input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations] | |
| targets = copy.deepcopy(input_ids) | |
| for target, source in zip(targets, sources): | |
| tokenized_len = len(tokenizer_image_token(source[0]['value'], tokenizer)) | |
| target[:tokenized_len] = IGNORE_INDEX | |
| return dict(input_ids=input_ids, labels=targets) | |
| def preprocess_v1( | |
| sources, | |
| tokenizer: transformers.PreTrainedTokenizer, | |
| has_image: bool = False | |
| ) -> Dict: | |
| conv = conversation_lib.default_conversation.copy() | |
| roles = {"ユーザー": conv.roles[0], "システム": conv.roles[1]} | |
| # Apply prompt templates | |
| conversations = [] | |
| for i, source in enumerate(sources): | |
| if roles[source[0]["from"]] != conv.roles[0]: | |
| # Skip the first one if it is not from human | |
| source = source[1:] | |
| conv.messages = [] | |
| for j, sentence in enumerate(source): | |
| role = roles[sentence["from"]] | |
| assert role == conv.roles[j % 2], f"{i}" | |
| conv.append_message(role, sentence["value"]) | |
| conversations.append(conv.get_prompt()) | |
| # Tokenize conversations | |
| if has_image: | |
| input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0) | |
| else: | |
| input_ids = tokenizer( | |
| conversations, | |
| return_tensors="pt", | |
| padding="longest", | |
| max_length=tokenizer.model_max_length, | |
| truncation=True, | |
| ).input_ids | |
| targets = input_ids.clone() | |
| assert conv.sep_style == conversation_lib.SeparatorStyle.TWO | |
| # Mask targets | |
| sep = conv.sep + conv.roles[1] + ": " | |
| for conversation, target in zip(conversations, targets): | |
| total_len = int(target.ne(tokenizer.pad_token_id).sum()) | |
| rounds = conversation.split(conv.sep2) | |
| cur_len = 0 #1 | |
| target[:cur_len] = IGNORE_INDEX | |
| for i, rou in enumerate(rounds): | |
| if rou == "": | |
| break | |
| parts = rou.split(sep) | |
| if len(parts) != 2: | |
| break | |
| parts[0] += sep | |
| if has_image: | |
| round_len = len(tokenizer_image_token(rou, tokenizer)) | |
| instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2 | |
| else: | |
| round_len = len(tokenizer(rou).input_ids) | |
| instruction_len = len(tokenizer(parts[0]).input_ids) - 2 | |
| target[cur_len : cur_len + instruction_len] = IGNORE_INDEX | |
| cur_len += round_len | |
| target[cur_len:] = IGNORE_INDEX | |
| return dict( | |
| input_ids=input_ids, | |
| labels=targets, | |
| ) | |
| def preprocess( | |
| sources: Sequence[str], | |
| tokenizer: transformers.PreTrainedTokenizer, | |
| has_image: bool = False | |
| ) -> Dict: | |
| """ | |
| Given a list of sources, each is a conversation list. This transform: | |
| 1. Add signal '### ' at the beginning each sentence, with end signal '\n'; | |
| 2. Concatenate conversations together; | |
| 3. Tokenize the concatenated conversation; | |
| 4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX. | |
| """ | |
| if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.PLAIN: | |
| return preprocess_plain(sources, tokenizer) | |
| elif conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.TWO: | |
| return preprocess_v1(sources, tokenizer, has_image) | |
| else: | |
| raise ValueError(f"Invalid style: {conversation_lib.default_conversation.sep_style}") | |
| class LazySupervisedDataset(Dataset): | |
| """Dataset for supervised fine-tuning.""" | |
| def __init__( | |
| self, data_path: str, | |
| tokenizer: transformers.PreTrainedTokenizer, | |
| data_args: DataArguments, | |
| ): | |
| super(LazySupervisedDataset, self).__init__() | |
| list_data_dict = json.load(open(data_path, "r")) | |
| from pathlib import Path | |
| print("Formatting inputs...Skip in lazy mode") | |
| self.tokenizer = tokenizer | |
| self.list_data_dict = [i for i in list_data_dict if Path(data_args.image_folder, i['image']).is_file()] | |
| self.data_args = data_args | |
| def __len__(self): | |
| return len(self.list_data_dict) | |
| def lengths(self): | |
| length_list = [] | |
| for sample in self.list_data_dict: | |
| img_tokens = 128 if 'image' in sample else 0 | |
| length_list.append(sum(len(conv['value'].split()) for conv in sample['conversations']) + img_tokens) | |
| return length_list | |
| def modality_lengths(self): | |
| length_list = [] | |
| for sample in self.list_data_dict: | |
| cur_len = sum(len(conv['value'].split()) for conv in sample['conversations']) | |
| cur_len = cur_len if 'images' in sample else -cur_len | |
| length_list.append(cur_len) | |
| return length_list | |
| def __getitem__(self, i) -> Dict[str, torch.Tensor]: | |
| sources = self.list_data_dict[i] | |
| if isinstance(i, int): | |
| sources = [sources] | |
| assert len(sources) == 1, "Don't know why it is wrapped to a list" # FIXME | |
| if 'image' in sources[0]: | |
| image_file = self.list_data_dict[i]['image'] | |
| image_folder = self.data_args.image_folder | |
| processor = self.data_args.image_processor | |
| image = Image.open(os.path.join(image_folder, image_file)).convert('RGB') | |
| if self.data_args.image_aspect_ratio == 'pad': | |
| def expand2square(pil_img, background_color): | |
| width, height = pil_img.size | |
| if width == height: | |
| return pil_img | |
| elif width > height: | |
| result = Image.new(pil_img.mode, (width, width), background_color) | |
| result.paste(pil_img, (0, (width - height) // 2)) | |
| return result | |
| else: | |
| result = Image.new(pil_img.mode, (height, height), background_color) | |
| result.paste(pil_img, ((height - width) // 2, 0)) | |
| return result | |
| image = expand2square(image, tuple(int(x*255) for x in processor.image_mean)) | |
| image = processor.preprocess( | |
| image, | |
| return_tensors='pt', | |
| size={"height": self.data_args.image_size, "width": self.data_args.image_size} | |
| )['pixel_values'][0] | |
| else: | |
| image = processor.preprocess( | |
| image, | |
| return_tensors='pt', | |
| size={"height": self.data_args.image_size, "width": self.data_args.image_size} | |
| )['pixel_values'][0] | |
| sources = preprocess_multimodal( | |
| copy.deepcopy([e["conversations"] for e in sources]), | |
| self.data_args | |
| ) | |
| else: | |
| sources = copy.deepcopy([e["conversations"] for e in sources]) | |
| data_dict = preprocess( | |
| sources, | |
| self.tokenizer, | |
| has_image=('image' in self.list_data_dict[i])) | |
| if isinstance(i, int): | |
| data_dict = dict(input_ids=data_dict["input_ids"][0], | |
| labels=data_dict["labels"][0]) | |
| # image exist in the data | |
| if 'image' in self.list_data_dict[i]: | |
| data_dict['images'] = image | |
| elif self.data_args.is_multimodal: | |
| # image does not exist in the data, but the model is multimodal | |
| crop_size = self.data_args.image_processor.crop_size | |
| data_dict['images'] = torch.zeros(3, crop_size['height'], crop_size['width']) | |
| return data_dict | |
| class DataCollatorForSupervisedDataset(object): | |
| """Collate examples for supervised fine-tuning.""" | |
| tokenizer: transformers.PreTrainedTokenizer | |
| def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]: | |
| input_ids, labels = tuple([instance[key] for instance in instances] | |
| for key in ("input_ids", "labels")) | |
| input_ids = torch.nn.utils.rnn.pad_sequence( | |
| input_ids, | |
| batch_first=True, | |
| padding_value=self.tokenizer.pad_token_id) | |
| labels = torch.nn.utils.rnn.pad_sequence(labels, | |
| batch_first=True, | |
| padding_value=IGNORE_INDEX) | |
| input_ids = input_ids[:, :self.tokenizer.model_max_length] | |
| labels = labels[:, :self.tokenizer.model_max_length] | |
| batch = dict( | |
| input_ids=input_ids, | |
| labels=labels, | |
| attention_mask=input_ids.ne(self.tokenizer.pad_token_id), | |
| ) | |
| if 'images' in instances[0]: | |
| images = [instance['images'] for instance in instances] | |
| if all(x is not None and x.shape == images[0].shape for x in images): | |
| batch['images'] = torch.stack(images) | |
| else: | |
| batch['images'] = images | |
| return batch |